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Setup 
 
Download and install the CppSim Version 3 package (i.e., download and run the self-
extracting file named setup_cppsim3.exe) located at: 
 

http://www.cppsim.com 
 

Upon completion of the installation, you will see icons on the Windows desktop 
corresponding to the PLL Design Assistant, CppSimView, and Sue2.  Please read the 
“CppSim (Version 3) Primer” document, which is also at the same web address, to 
become acquainted with CppSim and its various components.  You should also read the 
manual “PLL Design Using the PLL Design Assistant Program”, which is located at 
http://www.cppsim.com, to obtain more information about the PLL Design Assistant as it 
is briefly used in this document.  
 
To run this tutorial, you will also need to download the file vco_ctsd_example.tar.gz 
available at http://www.cppsim.com, and place it in the Import_Export directory of 
CppSim (assumed to be c:/CppSim/Import_Export).  Once you do so, start up Sue2 by 
clicking on its icon, and then click on Tools->Library Manager as shown in the figure 
below. 
 

 
 
In the CppSim Library Manager window that appears, click on the Import Library 
Tool button as shown in the figure below. 



 
 

In the Import CppSim Library window that appears, change the Destination Library 
to vco_ctsd_example, click on the Source File/Library labeled as 
vco_ctsd_example.tar.gz, and then press the Import button as shown in the figure 
below.  Note that if vco_ctsd_example.tar.gz does not appear as an option in the Source 
File/Library selection listbox, then you need to place this file (downloaded from 
http://www.cppsim.com) in the c:/CppSim/Import_Export directory. 

  
 

Once you have completed the above steps, restart Sue2 as directed in the above figure. 



Introduction 
 
This tutorial explores the design of a 4th order continuous-time (CT) ∆Σ ADC with a 
voltage controlled oscillator (VCO) based integrator and quantizer using the CppSim 
behavioral simulation tool. VCO based analog-to-digital converters (ADC’s) have 
recently become a topic of great interest in the mixed-signal community.  In addition to 
having a very digital structure that benefits from technology scaling, the VCO presents a 
host of unique signal processing properties that are especially attractive in the design of 
oversampling converters.  
 
However, certain non-idealities—namely, non-linearity in the VCO’s voltage-to-
frequency translation gain (Kv)—have limited the resolution of the VCO-based ADC to 
less than 8 effective number of bits (ENOB), pigeon-holing the architecture to niche low-
power applications where such resolution is adequate [3, 4]. Indeed, only recently has the 
mixed-signal community demonstrated that feedback techniques could linearize the 
VCO-based ADC further, with the work in [5] demonstrating an SNDR of 67 dB in a 20 
MHz bandwidth. 
 
To that end, this tutorial will introduce a new 4th order CT ∆Σ ADC architecture that 
leverages a VCO-based quantizer to achieve approximately 13 ENOB (78 dB SNDR) in a 
20 MHz input signal bandwidth.  An in-depth discussion of the ADC architecture, its 
implementation, and measured results can be found in [1, 2]. This tutorial will focus on 
simulation and experimentation with relevant design variables using CppSim. However, a 
brief explanation of the architectural advantage of this VCO-based ADC implementation 
follows below. 

A. Benefits of a VCO-based ADC Architecture 
 

 
 

Figure 1: key VCO characteristics and relationships. 
 
While a VCO has a variety of unusual and interesting properties, it has two traits that are 
especially attractive and relevant in the design of CT ∆Σ ADC’s. First, the VCO behaves 
as a CT voltage-to-phase integrator. As shown in Figure 1, the instantaneous VCO output 
frequency Fout(t) is proportional to the applied input voltage Vtune(t) according to the 
voltage-to-frequency gain Kv [Hz/V]. The resulting VCO output phase Φout(t) is 
proportional to the time integral of the applied input voltage. Note that as long as the 
VCO oscillates, the VCO output phase will accumulate endlessly, even for a DC input. 
This implies that the VCO behaves as a CT integrator with infinite DC gain. 
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Figure 2: multibit quantization with a ring oscillator structure. 
 
A second property of interest is the digital nature of the VCO outputs. Note that while the 
VCO output phase and frequency are continuously varying, the VCO output itself toggles 
between two discrete levels, VDD and GND, much like a CMOS digital gate (see Figure 2). 
Multi-phase (or equivalently, multi-bit) quantization can be accomplished by sampling 
the output phases of a ring oscillator with an array of D-flip-flops. Note that since the 
VCO phases are full-swing logic signals, the quantizer is robust to voltage offsets in the 
flip-flops. At the same time, only one VCO edge transitions at a given sampling instant, 
while the rest of the VCO phases saturate to either VDD or GND. Consequently, the 
quantizer not only is less prone to generate metastable outputs, but also has guaranteed 
monotonicity without requiring any calibration. 

B. Early VCO-based ADC Architectures 
 
Early VCO-based ADC’s were very simple, comprising a ring-VCO, counters, and 
sampling registers (see Figure 3). As the analog input signal modulates the VCO 
frequency via the tuning node, the counter continuously accumulates the number of 
transitioning edges during the sample period. At the end of the period, the resulting count 
is sampled by a register, the counter reset to zero, and the process repeated. As can be 
seen from the figure, the sampled count is proportional to the oscillation frequency of the 
VCO, and therefore the input signal level.  Therefore, this ADC will henceforth be 
referred to as the voltage-to-frequency VCO-based ADC. 
 



 

 
 

Figure 3: multiple-phase counting ADC architecture. 
 

Note that under certain circumstances, the counters in the VCO-based ADC of Figure 3 
can be eliminated [3].  In particular, when the sample rate is chosen such that the VCO 
elements do not transition more than once in a given sample period, the counters can be 
replaced with registers and XOR gates (see Figure 4). These gates process the sampled 
VCO phases, and generate a thermometer code that, when summed, is equivalent to the 
output count of the counter-based VCO ADC. This equivalence is possible because the 
register-XOR combination effectively performs a first-order difference, or discrete-time 
differentiation, of the sampled/quantized VCO phases.  Since frequency is the derivative 
of phase, the resulting outputs will be proportional to the input voltage applied to the 
VCO control node. Note that the reset in the counter-based VCO ADC of Figure 3 also 
performed a first order difference by canceling out the previous quantized phase.   
 

 
 

Figure 4: a voltage-to-frequency VCO-based ADC that eliminates the counter by 
oversampling the VCO output phase. 



 
 

Figure 5: analytical model of the voltage-to-frequency VCO-based ADC, and the 
equivalent frequency domain block diagram. 
 
A general model for the voltage-to-frequency VCO-based ADC is shown in the top-half 
of Figure 5. A subtle benefit of this voltage-to-frequency ADC is that the quantization 
noise will be first-order noise shaped due to the post-quantization differentiation, as 
illustrated in Figure 5. Furthermore, the architecture precludes the feedback DAC needed 
in a classical first-order ∆Σ ADC, greatly simplifying design. Unfortunately, the non-
linearity of the VCO’s voltage-to-frequency conversion gain, Kv, severely limits the 
resolution of this open loop architecture. 

C. Improving Linearity with a Voltage-to-Phase VCO-based Integrator and 
Quantizer 
 
In all prior voltage-to-frequency VCO-based ADC architectures, the VCO output 
frequency is the desired output variable due to its proportional relationship with the input 
signal. Therefore, to exercise the full DR of the VCO quantizer, the input signal to the 
VCO must span the entire non-linear transfer characteristic, and incur harmonic distortion 
(see Figure 6(a)). However, if it were possible to leverage the VCO output phase, then it 
would not be necessary to span this non-linear transfer characteristic. Since the VCO 
behaves as an ideal voltage-to-phase integrator and typically has a large Kv, small 
perturbations at the tuning node on the order of tens of mV are sufficient to shift the VCO 
phase by a substantial amount. 
 
Of course, it is not feasible to use an open-loop integrator with infinite DC gain since 
frequency offsets, drifts, and temperature variations will cause the VCO output phase to 
saturate the phase detector that follows. At the same time, the input signal level is 
restricted to being no more than a few tens of mV, which is a severe restriction on the 
dynamic range of the ADC. Negative feedback offers a simple solution to this problem, 
as illustrated in Figure 6(b). Here, the VCO phase is sampled and quantized by registers, 



and compared to a reference phase via a phase detector. The output of the detector then 
drives a multibit DAC, which subtracts the previously quantized value from the input 
signal applied to the VCO. The resulting residue is then applied to the control node of the 
VCO, and integrated during the next cycle. Note that the feedback loop shown in Figure 
6(b) is in fact a first-order CT ∆Σ ADC loop, and will therefore first-order shape the 
VCO quantization noise.  
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Figure 6: (a) prior voltage-to-frequency VCO-based ADC, and (b) proposed voltage-to-
phase VCO-based ADC 
 
Preliminaries 
 
We will now investigate the voltage-to-frequency and the voltage-to-phase VCO-based 
ADC’s of Figures 5(a) and 5(b) using CppSim.  In doing so, we will explain how to plot 



transient simulation data using CppSimView, and how to generate FFT’s of the ADC 
output data streams using MATLAB.   

A. Opening Sue2 Schematic 
 
Click on the Sue2 icon to start Sue2, and then select the vco_ctsd_example library from 
the schematic listbox.  The schematic listbox should now look as follows: 
 

 
 

Select the test_vco_quantizer cell from the above schematic listbox.  The sue2 
schematic window should now appear as shown below.  Key signals for this schematic 
include: 
 
 freq_out: the quantized output frequency from the VCO voltage-to-frequency 
 VCO-based ADC 
  
 phase_out: the quantized output phase from the VCO voltage-to-phase VCO-
 based ADC 
 
The other labeled signals in the schematic window are self explanatory.  Note that both 
the voltage-to-frequency and voltage-to-phase VCO-based ADC’s make use of the 
vco_integrator_quantizer module, which is a realization of the counter-less VCO-based 
voltage-to-frequency ADC of Figure 5 written in C++ code.  Consequently, note that the 
VCO nominal oscillation frequency is 250 MHz, its Kv is 250 MHz/V, and the ADC 
clock frequency is 1 GHz in order to satisfy the constraints required for the architecture 
to correctly calculate the quantized output frequency.  The quantized output phase is 
calculated using the phase detection scheme shown in Figure 6(b), but with 250 MHz 
reference phases to match the 250 MHz nominal oscillation frequency.  The code for the 
vco_integrator_quantizer module can be seen by double clicking on the module and 
pressing the button labeled Edit CppSim Code. 
 



 
 

B. Running CppSim Simulations 
 
In the Sue2 schematic window, click on the Tools text box in the menubar, and then 
select CppSim Simulation. A Run Menu window similar to the one shown below should 
open automatically. Note that the Run Menu is already synchronized to the schematic that 
you will be simulating (test_vco_quantizer). If for whatever reason this is not the case, 
click on the Synchronize button in the menu bar, and the Run Menu will be synchronized 
to the schematic in your Sue2 window. 
 
 

 
 



To establish the simulation parameters, click on the Edit Sim File button in the menu. An 
Emacs window should appear displaying the contents of the simulation parameters file 
(test.par). The contents of your test.par file should look something like what is shown 
below: 
 
///////////////////////////////////////////////////////////// 
// CppSim Sim File: test.par 
// Cell: test_vco_quantizer 
// Library: UltrasoundADC 
///////////////////////////////////////////////////////////// 
 
// Number of simulation time steps 
// Example: num_sim_steps: 10e3 
num_sim_steps: 2e5 
 
// Time step of simulator (in seconds) 
// Example: Ts: 1/10e9 
Ts: 1/100e9 
 
// Output File name 
// Example:  name below produces test.tr0, test.tr1, ... 
// Note: you can decimate, start saving at a given time offset, etc. 
//    -> See pages 34-35 of CppSim manual (i.e., output: section) 
output: test_tran start_sample=1e5 
 
// Nodes to be included in Output File 
// Example: probe: n0 n1 xi12.n3 xi14.xi12.n0 
probe: in clk freq_out phase_out dac_out 
 
///////////////////////////////////////////////////////////// 
// Note:  Items below can be kept blank if desired 
///////////////////////////////////////////////////////////// 
 
// Values for global parameters used in schematic 
// Example: global_param: in_gl=92.1 delta_gl=0.0 step_time_gl=100e3*Ts 
global_param:  
 
// Rerun simulation with different global parameter values 
// Example: alter: in_gl = 90:2:98 
// See pages 37-38 of CppSim manual (i.e., alter: section) 
alter: 
 
When you are finished, you can close the Emacs window by pressing Ctrl-x Ctrl-c. To 
launch the simulation, click on the menu bar button labeled Compile/Run. 
 
Plotting Time-Domain Results 
 
Double-click on the CppSimView icon to start the CppSim viewer. The viewer should 
appear as shown below – notice that the banner indicates that it is currently synchronized 
to the test_vco_quantizer cellview. If this is not the case, Sue2 and CppSimView can be 
synchronized by clicking the Synch button on the left-hand side of the CppSimView 
window. 
 



 
 
To view the simulation results, first click on the radio button titled No Output File. 
Immediately after this button is clicked, the radio button will instead display the output 
file’s name, test_tran.tr0. Next, click on the Load button on the left-hand side of the 
CppSimView window. Once this button is pressed, the Nodes radio button will be filled 
in, and the probed nodes will be listed, as shown below. 
 

 

A. Output Signal Plots 
 
In the CppSimView window, double-click on signals in, freq_out and phase_out. You 
should see plots of the input signal applied to the ADC’s, and the output waveforms of 
the voltage-to-frequency and voltage-to-phase VCO-based ADC’s, as shown below.  
Even from this simple transient plot, the signal distortion caused by the non-linearity of 
the VCO Kv is evident in the output waveform of the voltage-to-frequency ADC.  Note, 
however, that the output of the voltage-to-phase quantizer does not appear to exhibit this 
distortion.  
 



 
 
Plotting Frequency Domain Results 
 
While viewing transient waveforms offer some intuition concerning the operation of the 
voltage-to-frequency and voltage-to-phase VCO-based ADC’s, analyzing the frequency-
domain results are essential in order to evaluate the performance of the overall 
architecture. To that end, longer simulations must be performed so that FFT’s with 
sufficient resolution can be generated. MATLAB is used to load in the CppSim 
simulation data, and to calculate and plot the resulting FFT. The MATLAB script used to 
generate the subsequent FFT plots (snr_plot.m) is included in the vco_ctsd_example 
library. 

 A. Triggering Output Data Storage 
 
Since the outputs of the VCO-based ADC’s are 1GS/s data streams, it is not necessary to 
store this information at every CppSim simulation time step Ts. Rather, the ADC output 
need only be stored at every ADC sample period T = 1ns, which results in a significantly 
smaller output file size. This can be accomplished by modifying the CppSim Sim File as 
shown below: 
 
num_sim_steps: 10.1e6 
output: test_fft trigger=trig_sig start_sample=1e5 
probe: freq_out phase_out 
 
The above output statement will launch a 10.1-million point simulation, generate an 
output file called test_fft.tr0, and will only write to the file when the trigger function 
detects a rising edge in the trigger signal trig_sig. The trig_sig signal can be seen in the 
test_vco_quantizer schematic, and simply corresponds to the inverted ADC clock signal 
clk. The start_sample statement prevents the test_fft.tr0 output file from being written 



until the 100,000th simulation time step has completed. This statement is necessary since 
initial transients in the ADC’s will corrupt the FFT, and should not be recorded.  Save the 
changes to the test.par file, and start the CppSim simulation by clicking on the 
Compile/Run button in the CppSim run menu. 

B. Plotting the FFT 
 
Once the CppSim simulation has completed, FFT’s of the voltage-to-frequency and 
voltage-to-phase ADC outputs can be generated with the help of MATLAB. The plots 
shown below were generated using the script (snr_plot.m) included in the distribution of 
the vco_ctsd_example library. The script is executed by typing: 
 
[SNR, SNDR, ENOB] = snr_plot(‘test_fft.tr0’,’freq_out’,1) 
[SNR, SNDR, ENOB] = snr_plot(‘test_fft.tr0’,’phase_out’,1) 
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Figure 6: 100,000-point FFT of the (a) voltage-to-frequency VCO-based ADC, and the 
(b) voltage-to-phase VCO-based ADC.  
 
As shown in Figures 6(a) and 6(b), the VCO voltage-to-phase quantizer improves the 
SNDR of the converter significantly. Here, the ADC’s of Figures 5(a) and 5(b) are 
modeled and simulated using CppSim behavioral simulator, and the corresponding FFT’s 
plotted assuming a -1 dBFS input signal and 1 GHz sample rate. Note that in both cases, 
VCO non-linearity similar to that in [3, 5] is included in the model by describing the 
voltage-to-frequency transfer characteristic with a fourth-order polynomial. All other 
circuit non-idealities are excluded. From Figure 6(a), it is obvious that the harmonic 
distortion in the voltage-to-frequency VCO quantizer is also present here, limiting the 
SNDR to roughly 30 dB in a 20 MHz bandwidth. But for the voltage-to-phase VCO 
quantizer of Figure 6(b), the distortion tones are almost completely eliminated. Indeed, 
the SNDR is limited primarily by the quantization noise, to approximately 66 dB in a 20 
MHz bandwidth. 
 



Proposed 4th Order CT ∆Σ ADC 
 
The simulation results from the previous section clearly showed the improved linearity 
that can be obtained when using a VCO voltage-to-phase quantizer. In reality, thermal 
noise, DAC mismatch, and other noise and error terms will add on top of the quantization 
noise floor, further degrading SNDR. To ensure high resolution, it is necessary to expand 
the loop filter and go beyond first-order noise shaping so that quantization noise can be 
further suppressed. Ultimately, the converter SNDR should be limited by thermal noise 
sources, and not by in-band quantization noise.  
 

s
K1
s

Kz

Kf1

Kf2

K2
s

K3
s

T

Q[n]

Kd2

Kd3

VCO Quantizer

z-1Kd1

in(t) out[n]

RZ DAC

NRZ DACs

Loop Filter

z-1/2  (1-z-1)

 
 

Figure 7: block diagram of the proposed 4th order CT ∆Σ ADC. 
 

 
 

Figure 8: schematic of the proposed ADC loop filter. 
 
A fourth-order loop filter was chosen for this thesis due to its high quantization noise 
shaping ability (SQNR > 95dB in 20 MHz BW).  The block diagram of the filter, which 
leverages feedforward and feedback stabilization, is shown in Figure 7, and a schematic 



realization of the filter is shown in Figure 8. The coefficients for the filter were chosen 
using the MATLAB Delta-Sigma Toolbox [6].  Since the toolbox returns coefficients for 
a DT filter, the equivalent CT loop filter coefficients were obtained by applying the d2c 
(discrete-time to continuous-time transformation) function available in the MATLAB 
Signal Processing Toolbox.  More information concerning the construction of the filter 
can be found in the thesis [2]. 
 
For the remainder of this tutorial, we will be primarily working with the top-level 
schematic of the proposed ADC architecture.  All results that will be reported in the 
subsequent sections of this document were obtained by simulating this top-level 
schematic. To view the top level schematic in Sue2, ensure that the vco_ctsd_example 
library is selected and click on the adc_top_4bit_nrz schematic.  The schematic window 
should then appear as shown below.  Some key signals in this schematic are: 
 
 phase_out: the output of the VCO voltage-to-phase quantizer 
 
 vin: the input voltage to the VCO voltage-to-phase quantizer (also used to 
 simulate the impact of finite output impedance of the minor-loop DAC’s) 

 

 
 
Notice that the parameters of many of the modules are variables, or include a variable.  
To view or change these variable values, open the top-level schematic Sim File.  A 
summary of the key variables of the Sim File is shown below: 
 



//enable or disable DWA for the DAC's 
dwa_en_dac1 = 1.0; 
dwa_en_dac2 = 1.0; 
 
//enable or disable mismatch and noise in different blocks 
vco_mm_en = 0.0; 
dac1_mm_en = 0.0; 
dac2_mm_en = 0.0; 
dac1_sw_mm_en = 0.0; 
dac2_sw_mm_en = 0.0; 
noise_en = 0.0; 
nonlin_en_vco = 0.0; 
nonlin_en_amp = 0.0; 
jitter_en = 0.0; 
 
//values of the 1-sigma mismatch for use in Monte Carlo 
dac_per_mm = 1.0 
dac_sw_per_mm = 3.0 
dac2_rz_per_mm = 4.0 
dac2_nrz_per_mm = 4.0 
dac2_sw_per_mm = 4.0 
vco_per_mm = 10.0 
 
//main DAC output resistance 
rout_dac1 = 1e9 
 
//random number generator seed value 
//(incremented during Monte-Carlo simulation) 
mm_seed_accum = 0 
 
//input signal frequency and amplitude 
fin = 2e6 
ain = 0.71 
 
//Opamp gain and bandwidth parameters 
//kbw = 2.5/4.0 means amplifier will have a unity-gain 
//bandwidth of 4.0 GHz (kbw is normalized to a 2.5 GHz BW) 
//kgain = 1.0 means amplifier will have a DC gain  of 60dB 
//(kgain is normalized to a DC gain of 60dB)  
kbw = 2.5/4.0 
kgain = 1.0 
 
//Loop filter coefficients (from Schreier Toolbox) 
kd2 = 1.7177 
kz = 0.0117 
kf2 = 0.8171 
km = 0.0293 
kf1 = 8.0983 
kd3 = 1.3475 
alpha = 0.15 
kint = 900e6 
katten = 0.25 
 



Examining Non-Idealities 
 
This section will build on the simple block-diagram behavioral model of the proposed 
ADC of Figure 7 by incrementally adding non-idealities to the model. This way, the 
impact of mismatches, noise, and other error sources found in real circuits can be studied 
both independently and collectively, elucidating which non-idealities limit the proposed 
converter’s performance. At the same time, this methodical process of introducing real 
circuit non-idealities will eventually produce a behavioral model that can accurately 
predict the converter’s actual measured performance.  More details on the behavioral 
model can be found in [1]. 

A. Amplifier Non-Linearity and Finite Gain-Bandwidth 
 
The effect of amplifier non-linearity as well as its connection to amplifier finite gain-
bandwidth can be understood intuitively when the signals stimulating the input of a non-
linear opamp are considered (see Figure 9). As before, quantization noise perturbs the 
input nodes of the opamp, prompting the amplifier to cancel out the perturbation via its 
negative feedback network such that the virtual ground condition is re-established. This 
time, however, the quantization noise will also encounter the opamp’s non-linear gain 
characteristic, causing the amplifier to settle in a nonlinear fashion, and resulting in 
inband quantization noise folding.  
 

 
 
Figure 9: quantization noise appearing at the input of an opamp, characterized by a non-
linear transfer function Â(s) 
 
While the amount of quantization noise folding depends on the size of the perturbation as 
well as the characteristics of the non-linearity, it is also strongly related to the settling 
speed of the amplifier. A faster amplifier will act to restore the virtual ground condition 
more quickly, which effectively reduces the time that the quantization noise encounters 



the non-linearity. This in turn reduces the non-linear settling transient that is integrated by 
subsequent integration stages in the loop filter, resulting in less quantization noise folding. 
 
The degree to which the converter’s performance will be affected by these non-idealities 
will depend on the amplifier’s open-loop characteristics, which will in turn depend on the 
implemented topology.  Information about the exact opamp implementation (a 4-stage 
modified nested Miller amplifier) and a detailed explanation of the opamp-integrator 
behavioral model can be found in [1].  For the purposes of this tutorial, we will simply 
focus on how to simulate the impact of different finite opamp gain and bandwidth on the 
proposed architecture.  This can be accomplished by modifying the definitions of the 
variables kbw and kgain in the CppSim Sim File: 
 
kbw = 2.5/4.0 
kgain = 1.0 
 
kbw defines the opamp unity-gain bandwidth, and is normalized to a unity-gain 
bandwidth of 2.5 GHz.  Consequently, the line above (kbw = 2.5/4.0) sets the opamp 
unity-gain bandwidth to 4.0 GHz.  kgain scales the gain-per-stage of the opamp (a 4-
stage modified nested Miller), and is normalized to a total 4-stage gain of 60 dB.  
Therefore, to scale the total DC gain up or down by a factor k, kgain should be scaled by 
(k)1/4.  For example, to increase the DC gain to 80 dB (a factor of 10 increase relative to 
60 dB), kgain should be scaled by (10)1/4 ≈ 1.7783.   
 
To quantify the impact of opamp non-linearity in behavioral simulation, the linear opamp 
model described in the previous section must be modified to include the specific 
characteristics of the non-linearity. Circuit simulations reveal that the non-linearity of 
most differential-pair based gain stages resembles a tanh(x) function, making this task 
relatively easy.  More details of the non-linear opamp-integrator model can be found in 
the thesis [1].  For the purposes of this tutorial, we will simply focus on simulating the 
impact of opamp non-linearity on the proposed architecture.  This can be accomplished 
by changing the value of the variable of nonlin_en_amp in the CppSim Sim File: 
 
nonlin_en_amp = 1.0 
 
Significant insight can be obtained from the behavioral simulation results, especially as it 
pertains to the unity-gain bandwidth requirements for the opamps. Figure 10 plots the 
behavioral simulated SNR/SNDR of the proposed ADC architecture for different opamp 
unity-gain frequencies assuming a DC gain of 60dB, and with opamp non-linearity 
included in the behavioral model. As can be seen from the figure, the SNR/SNDR 
degrades steadily when the unity-gain bandwidth is decreased from 4.5 GHz down to 2.5 
GHz. Indeed, to achieve close to 14 ENOB performance, an opamp with greater than 3.5 
GHz unity-gain bandwidth must be designed.   
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Figure 10: behavioral simulated SNR/SNDR of the proposed ADC assuming nonlinear 
opamps with a DC gain of 60 dB, and various unity-gain bandwidths. Only quantization 
noise, VCO non-linearity, and amplifier non-linearity and finite gain-bandwidth are 
considered in the behavioral simulations. 
 
The SNR/SNDR calculations were obtained by modifying the CppSim Sim File: 
 
num_sim_steps = 9.1e6 
output: test_fft trigger=trig_sig start_sample=1e5 
 
The resulting CppSim output file is then processed with the snr_plot.m script included 
in adc_top_4bit_nrz simulation result directory: 
\CppSim\SimRuns\vco_ctsd_example\ 
 
[snr,sndr,enob] = snr_plot(‘test_fft.tr0’,‘phase_out’,1) 

B. Finite DAC Impedance 
 
As discussed in the previous section, the opamp’s finite gain-bandwidth limitation will 
result in quantization noise appearing at the input node of the amplifier. Unfortunately, 
any movement at this node will modulate the drain-to-source voltages of the MOSFET’s 
comprising the DAC unit elements, resulting in a parasitic current due to the DAC’s 
finite output resistance. Furthermore, this output resistance will vary according to the 
applied DAC code, resulting in a parasitic current that varies in signal-dependent manner. 
 



 
 

Figure 11: the main feedback DAC behavioral model, which includes the effect of finite 
output resistance. 
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Figure 12: impact on SNR/SNDR due to the main feedback DAC’s finite output 
resistance and amplifier non-linearity and finite gain-bandwidth. 
 



To quantify the impact of the DAC’s finite output resistance on the converter’s 
SNR/SNDR in simulation, the DAC behavioral model shown in Figure 11 was created. 
Note that a single-ended version is shown for simplicity, while fully differential amplifier 
and DAC topologies were actually implemented. Here, an array of conductances is used 
to describe the finite resistances of the unit-elements, and are either enabled or disabled 
to mimic the code dependency of the output resistance.  Simulating the impact of finite 
output resistance in the main feedback DAC can be accomplished by sweeping the value 
of the variable of rout_dac1 in the CppSim Sim File: 
 
alter: rout_dac1 = 1e3 1e4 1e5 1e6 1e7 
 
A plot detailing the simulated SNR/SNDR for a range of DAC output resistances is 
shown in Figure 12. From these results, it is clear that the effect of finite resistance can 
largely be ignored when a minimum unit-element output resistance of 30kΩ is achieved. 
Indeed, quantization noise-folding caused by amplifier non-linearity and gain-bandwidth 
limitations appear to mask the errors caused by DAC output resistances when this 
minimum resistance threshold is exceeded. 

C. Device Noise 
 
In many state-of-the-art data converter designs, device noise establishes the upper limit 
on achievable SNR. Consequently, the converter resolution ultimately becomes a 
question of how much power the designer is willing to sacrifice to reduce the device 
noise to a desired level. In CT Σ ADC’s, the device noise primarily originates from the 
main feedback DAC, the first integrator, and the input resistors.  
 
A conservative estimate of all these noise sources given the desired power budget is 
roughly 5nV/ √Hz. To achieve near 14 ENOB resolution then dictates that the full-scale 
signal be on the order of 2Vpp,diff , resulting in an ideal SNR of 90 dB (14.7 ENOB). Note 
however, that applying a fullscale input to a ∆Σ ADC can cause saturation in the 
integrators, resulting in quantization noise-folding. For the proposed topology, behavioral 
simulations in CppSim show that the maximum input signal possible is -3 dBFS, 
resulting in a peak ideal SNR of 87 dB. While the SNR appears to offer solid 14 ENOB 
performance, in reality the thermal noise will add to the quantization noise floor due to 
opamp non-linearity and finite gain-bandwidth. Consequently, the ADC architecture must 
be simulated to obtain a more accurate estimate of the SNR/SNDR.  
 
Histograms generated by running 50 Monte-Carlo simulations (in which the seed of the 
random noise generator is varied) of the proposed architecture are shown in Figure 13.  
The simulation data was obtained by enabling thermal noise in the simulation, and 
incrementing the mm_seed_accum variable 50 times so that the random noise generator 
will be seeded in a different manner each time.  To shorten the overall simulation time of  
the Monte-Carlo, only 100,000 simulation points are stored into memory (as opposed to 
the 1-million points stored in previous simulations): 
 
num_sim_steps = 1e6 
noise_en = 1.0 
alter: mm_seed_accum = 1:50 



 

 
 
Figure 13: histograms of the behavioral simulated SNR/SNDR of the proposed ADC 
architecture assuming a thermal noise density of 5nV/ √Hz. Data obtained by running 50 
Monte-Carlo simulations of the proposed architecture, and changing the seed of the 
random noise generator. 
 
Note that the noise variances are already defined in the adc_top_4bit_nrz schematic 
file.  As shown in Figure 13, the average SNR/SNDR of 85.1/84.2 dB suggests that the 
noise floor is effectively 2 dB higher than the thermal noise limited case due to inband 
quantization noise folding from the amplifier non-linearity and finite gain-bandwidth. 
Note however, that additional noise sources (particularly static and dynamic mismatch 
errors from the main feedback DAC) will add to this noise floor, further degrading 
SNR/SNDR as will be discussed later. 

D. VCO Unit Element Mismatch 
 
Mismatches in the delay stages comprising the ring oscillator result in a net accumulated 
phase error at the end of each sampling period. Fortunately, these errors will be 
suppressed by the gain of the preceding loop filter, and should result in a small 
degradation of SNDR when referred to the input.  
 



 
 

Figure 14: histogram of the behavioral simulated SNR/SNDR of the proposed ADC 
architecture assuming a 15-stage ring-VCO with delay stage mismatches of 1σ = 5 %, 
7.5%, and 10%. Data obtained by running 50Monte-Carlo simulations of the proposed 
architecture for each mismatch deviation. 
 
To verify the architecture’s robustness to this variation, we can introduce delay stage 
mismatch into the behavioral model and perform Monte-Carlo simulation by modifying 
the CppSim Sim File: 
 
vco_mm_en = 1.0 
vco_per_mm = 5.0 7.5 10.0 
mm_seed_accum = 1:50 
 
The above code will perform 50 simulations per each VCO mismatch standard deviation 
(5.0%, 7.5% and 10.0%) while varying the mismatch in each simulation in a Monte-Carlo 
fashion.  The simulation produces 150 output files which can then be processed in 
MATLAB to collect statistics, as shown in Figure 14, which plots the histograms of the 
simulated SNR/SNDR.  As can be seen from the histograms, even a mismatch as large as 
1σ = 10% will result in an average SNR/SNDR of 84.7/83.9 dB, a degradation of less 
than 0.5dB.  

E. Main NRZ DAC Unit Element Mismatch 
 



While mismatches in the second and third feedback DAC unit elements will be shaped by 
the high gain of the preceding loop filter, mismatches in the main feedback DAC unit 
elements appear directly at the input of the ADC. Consequently, the main feedback DAC 
must perform at least as well as the entire converter, a very challenging requirement. 
Fortunately, data-directed dynamic element matching (DEM) algorithms have been 
developed to shape DAC unit-element mismatch errors, enabling high performance 
compared to prior scrambling algorithms that relied on random selection of DAC unit-
elements. 
 

 
 
Figure 15: histogram of the behavioral simulated SNR/SNDR of the proposed ADC 
architecture for DAC unit-element mismatches of 1σ = 0.5%, 1.0%, and 1.5%. Data 
generated by running 50 Monte-Carlo simulations of the proposed architecture for each 
mismatch deviation. 
 
For the proposed ADC, the dynamic weighted averaging (DWA) algorithm was chosen 
for its superior inband mismatch shaping ability. Nevertheless, behavioral simulations 
reveal that even this shaped DAC mismatch has a severe impact on converter SNDR.  To 
include the effect of unit-element mismatch in the behavioral model, as well as to enable 
the DWA algorithm in simulation, the CppSim Sim File should be modified as shown 
below: 
 
dwa_en_dac1 = 1.0; 
dac1_mm_en = 1.0; 
 



Note that the main feedback DAC unit element mismatch deviation (dac_per_mm) is 
already defined in the Sim File.  Monte-Carlo simulation can then be performed in the 
manner described in the previous section. 
 
As shown in the histograms of Figure 15, even a unit-element mismatch of just 1.5% 
causes the average SNDR to degrade by 2 dB. While careful design and layout 
techniques can enable unit-element current source matching of less than 1%, an estimate 
of 1% will nevertheless be assumed for the remainder of this document. With this 
assumption, unit-element mismatch in the main DAC would result in an average 
SNR/SNDR of 84.0/82.7 dB. 

F. Main NRZ DAC Inter-Symbol Interference (ISI) 
 
In some sense, the term dynamic element matching (DEM) is a misnomer in that its 
purpose is to shape a static error, namely mismatches in the DC current values of the unit 
elements in a current-source DAC topology. However, such topologies do encounter a 
real dynamic error during switching transients, a phenomenon known as inter-symbol 
interference (ISI). ISI occurs when the unit elements have mismatched output current 
transients during switching. The mismatch itself can be caused by a number of factors, 
but is typically due to unequal rising/falling switching time constants, charge injection, 
and parasitic clock/data feed-through.  
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Figure 16: transistor-level simulation of NRZ DAC output current with DWA disabled 
and enabled. 
 
When ISI exhibits any code dependency (as is the case for an NRZ DAC), it will cause 
distortion tones in the ADC output spectrum, degrading the overall converter SNDR. At 
the same time, these tones cannot be scrambled and shaped by the DEM. As shown in 
Figure 16, although a DWA sequence is inputted to the DAC, the transient mismatches 



and transition densities still exhibit a code dependency when the DAC code exceeds half 
of full scale since all selected unit elements will not experience a switching transient. 
 
As behavioral simulations reveal, ISI degrades converter resolution through its creation 
of strong distortion tones.  To include the effect of transient mismatch in the behavioral 
model, the CppSim Sim File should be modified as shown below: 
 
dac1_sw_mm_en = 1.0; 
  
Note that the main feedback DAC ISI deviation (dac_sw_per_mm) is already defined in 
the Sim File.  Monte-Carlo simulation can then be performed in the manner described in 
the previous section. 
 

 
 
Figure 17: histograms of the behavioral simulated SNR/SNDR of the proposed ADC 
architecture assuming a main NRZ DAC with transient mismatch (ISI) of 1σ = 1%, 3%, 
and 5%. Data generated by running 50 Monte-Carlo simulations of the proposed ADC 
architecture for each mismatch deviation. 
 
Indeed, the histograms of Figure 17 show that steadily increasing the mismatch in the 
switching transients degrades the SNDR by as much as 5dB compared to the ISI-less case, 
while the SNR remains relatively constant. Interestingly, the simulation results also 
reveal another undesirable effect of ISI, namely a wider variation in the range of 
achievable SNDR. Like the ring-VCO delay stages, estimating the transient mismatch is 
not straightforward as it will vary due to process and layout parasitics. However, the 



switching devices are much larger than a ring-VCO delay stage in terms of area since 
they must switch large currents. Consequently, an estimate of 3% will be assumed for this 
mismatch, resulting in an average SNR/SNDR of 83.9/78.9 dB, almost a 4 dB 
degradation compared to the ISI-less case. 

G. Minor-Loop NRZ and RZ DAC Unit-Element Mismatch and ISI 
 
As previously mentioned, errors in the minor-loop DAC’s are suppressed by the gain of 
the loop filter, and will also be shaped by the DWA algorithm. Therefore, the minor-loop 
DAC’s can be made smaller and the architecture can tolerate a higher degree of mismatch 
and ISI in their unit elements. To include the effect of minor-loop DAC ISI and unit-
element in the behavioral model, the CppSim Sim File should be modified as shown 
below: 
 

SNR (dB) SNDR (dB)

 
 

Figure 18: histograms of the simulated SNR/SNDR assuming a minor-loop RZ and NRZ 
DAC’s with unit-element and transient mismatches (ISI) of 1σ = 3%, 4%, and 5%. Data 
generated by running 50 Monte-Carlo simulations of the proposed ADC architecture for 
each mismatch deviation. 
 
dac2_mm_en = 1.0; 
dac2_sw_mm_en = 1.0; 
 



Note that the minor-loop DAC mismatch and ISI deviations (dac2_rz_per_mm, 
dac2_nrz_per_mm, dac2_sw_per_mm) are already defined in the Sim File.  Monte-Carlo 
simulation can then be performed in the manner described in the previous section. 
 
Histograms of the simulated SNR/SNDR assuming a variety of minor-loop DAC 
mismatches and ISI are shown in Figure 18. Even when using a conservative mismatch 
estimate of 1σ = 5% for both unit-element and transient mismatches, behavioral 
simulations indicate that the proposed architecture can still achieve an average 
SNR/SNDR of 83/79 dB. Consequently, it is clear that mismatches in the minor-loop 
DAC are not as serious as those in the main NRZ feedback DAC thanks to the loop filter 
gain. 

H. Clock Jitter 
 
The deleterious effect of clock jitter on the SNDR of CT ∆Σ ADC’s has been well 
documented in the literature. Fortunately, by specifically adopting a multibit NRZ DAC 
structure, the converter can be made less sensitive to clock jitter than the prototypical 
single-bit modulator.  To verify the architecture’s insensitivity to jitter, the behavioral 
model is modified to include variable amounts of clock jitter.  This can be accomplished 
by modifying the value of the noise generator stimulating the input of the clock signal 
source, as shown below: 
 

 
 
The value of the noise variance needed to establish a certain jitter will depend on the 
ADC clock frequency and cut-off frequency of the noise filter.  To see this, specify the 
noise variance to be 1e-12, and the noise filter cutoff frequency to be 100 kHz.  Then, add 
the nodes edge_clk and edge_ref to the list of probed nodes in the Sim File, and run a 1-
million point simulation: 



 
num_sim_steps: 1.0e6; 
probe: edge_clk edge_ref; 
 
When the simulation has completed, open the simulation output file in CppSimView, and 
click on the plotsig(…) radio button to see a list of different plotting functions.  Select 
the plot_pll_jitter(x,’…’) function and replace the variables ref_timing_node with 
edge_ref, and start_edge with 10, and then press Enter.  The CppSimView window 
should then appear as shown below: 
 

 
 
Next, click on the nodes radio button, and double click on the on the node labeled 
edge_clk.  You should obtain a plot similar to what is shown below: 
 

 
 
In this case, the noise variance of 1e-12 and noise filter cutoff frequency of 100 kHz 
corresponds to a jitter of 360 fs,RMS.  By modifying the noise variance, different levels 



of clock jitter can then be introduced into the simulation of the ADC.  Note that in reality, 
the impact of jitter on the ADC performance will depend on the exact phase noise 
spectrum of the ADC clock source, which will in turn depend on the exact PLL 
implementation.  Thus, the PLL can be designed in synchrony with the ADC, but doing 
so is beyond the context of this tutorial. The method described above is simply a quick 
means of introducing jitter in the simulation.   
 
Figure 19 shows the average and standard deviation converter SNR and SNDR from 
Monte Carlo behavioral simulations, assuming a clock jitter as low as 250 fs,RMS up to 
more than 100 ps,RMS. As can be seen, the architecture can tolerate up to 4-5 ps,RMS of 
jitter without significant degradation of converter resolution, thus validating the multibit 
NRZ DAC’s robustness to clock jitter. 
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Figure 19: average and standard deviation SNR and SNDR for variable amounts of clock 
jitter, as determined from Monte Carlo behavioral simulations. 

I. Summary 
 
The simulated performance of the proposed ADC is summarized in Table 1, and a 
representative FFT of the digitized ADC output when sources of noise and nonlinearity 
are enabled and disabled is shown in Figure 20. All SNR/SNDR calculations assume a 20 
MHz input bandwidth, a 900 MHz clock rate (OSR=22.5), and a 2 MHz input sine wave 
with an amplitude of -3 dBFS. As shown in row 1 of the table, the converter achieves a 
signal-to-quantization noise (SQNR) of 95.5 dB. The inclusion of VCO non-linearity in 
the model (row 2) causes less than 1 dB degradation in SNDR, thus illustrating the 
advantage of using the VCO as a voltage-to-phase quantizer. Amplifier non-linearity and 
finite gain-bandwidth, finite DAC output resistance, and thermal noise sources (row 3-5) 



degrade the SNDR level to about 84 dB. Mismatches in the VCO delay stages (row 6) 
have less than 1 dB impact on the overall SNDR, despite the high variation of 10%. 
 

-3 dBFS 2 MHz Input Sine Wave 
20 MHz bandwidth, fs = 900 MHz 
(OSR=22.5) 

SNR 
(dB) 

SNDR 
(dB) 

1. Quantization noise only 95.7 95.5 
2. VCO Kv non-linearity 95.0 94.9 

3. Amplifier non-linearity and finite gain-
bandwidth 88.3 87.7 

4. DAC finite output resistance 88.4 88.0 
5. Thermal noise 85.1 84.2 
6. Ring-VCO delay-stage mismatch 84.7 83.9 

7. Main feedback DAC unit element 
current mismatch 84.0 82.7 

8. Main feedback DAC transient mismatch 
(ISI) 83.9 78.9 

9. Main and minor-loop feedback DAC’s 
unit element and transient mismatch 82.9 78.3 

 
Table 1: simulated performance of the proposed ADC architecture. 
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Figure 20: representative FFT of the simulated ADC output with quantization noise only 
(dark) and all noise/mismatch sources included (light). 



 
To evaluate the effect of DAC unit-element mismatch, variations of 1σ = 1% was 
assumed for the main NRZ feedback DAC, and 1σ = 4% were assumed for the minor 
loop NRZ and RZ feedback DAC’s. Although first-order shaped by the DWA algorithm, 
mismatches in the main DAC feedback (row 7) still degrade the SNR/SNDR by roughly 
1 dB. However, ISI in the main DAC has a much larger impact on the converter 
SNR/SNDR, resulting in a 4 dB decrease (row 8). As expected, ISI and the first-order 
shaped mismatches from the minor loop DAC’s have a much smaller impact on converter 
performance compared to the main feedback DAC. Nevertheless, errors in these DAC’s 
result in a 1 dB decrease in SNR (row 9). 
 
Conclusion 
 
This tutorial covers issues related to the behavioral simulation of a 4th order CT ∆Σ ADC 
with VCO-based integrator and quantizer example using CppSim. In particular, the 
reader has been introduced to the tasks of running CppSim simulations, generating FFT 
plots, and performing Monte-Carlo simulation, as well as viewing the impact of non-
idealities, such as amplifier non-linearity, finite gain and bandwidth, DAC unit-element 
mismatch and ISI, thermal noise, VCO delay element mismatch, and clock jitter. Finally, 
the reader has been given an overview of VCO-based ADC designs, with emphasis 
placed on the linearity improvement obtained with the proposed voltage-to-phase 
architecture, compared to prior published voltage-to-frequency architectures.  
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