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Setup 
 
Download and install the CppSim Version 3 package (i.e., download and run the self-extracting 
file named setup_cppsim3.exe) located at: 
 

http://www.cppsim.com 
 

Upon completion of the installation, you will see icons on the Windows desktop corresponding to 
the PLL Design Assistant, CppSimView, and Sue2.  Please read the “CppSim (Version 3) 
Primer” document, which is also at the same web address, to become acquainted with CppSim 
and its various components. 
 
To run this tutorial, you will also need to download the file vco_adc_example.tar.gz available at 
http://www.cppsim.com, and place it in the Import_Export directory of CppSim (assumed to be 
c:/CppSim/Import_Export).  Once you do so, start up Sue2 by clicking on its icon, and then click 
on Tools->Library Manager as shown in the figure below. 
 

 
 
In the CppSim Library Manager window that appears, click on the Import Library Tool button 
as shown in the figure below. 
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In the Import CppSim Library window that appears, change the Destination Library to 
VCO_ADC_Example, click on the Source File/Library labeled as vco_adc_example.tar.gz, and 
then press the Import button as shown in the figure below.  Note that if vco_adc_example.tar.gz 
does not appear as an option in the Source File/Library selection listbox, then you need to place 
this file (downloaded from http://www.cppsim.com) in the c:/CppSim/Import_Export directory. 
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Once you have completed the above steps, restart Sue2 as directed in the above figure. 
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Introduction 
 
Advanced CMOS processes offer very fast switching speed and high transistor density that can be 
utilized to implement analog signal processing functions in interesting and unconventional ways, 
for example by leveraging time as a signal domain. In this context, voltage controlled ring 
oscillators are circuit elements that are not only very attractive due to their highly digital 
implementation which takes advantage of scaling, but also due to their ability to amplify or 
integrate conventional voltage signals into the time domain.  
 
In [1], the use of VCO-based quantization within continuous-time (CT) ΣΔ analog-to-digital 
converter (ADC) structures is explored, with a custom prototype in 0.13μm CMOS showing 
measured performance of 86/72 dB SNR/SNDR with 10 MHz bandwidth while consuming 40mW 
from a 1.2V supply and occupying an active area of 640μm x 660μm. A key element of the ADC 
structure is a 5-bit VCO-based quantizer clocked at 950MHz, which achieves first-order noise 
shaping of its quantization noise. The quantizer structure allows the second-order CT ΣΔ ADC 
topology to achieve third-order noise shaping, and direct connection of the VCO-based quantizer 
to the internal DACs of the ADC provides intrinsic dynamic element matching of the DAC 
elements. 
 
This tutorial will focus on demonstrating the advantages of feedback to improve the performance 
of the VCO-based quantizer, comparing the stand-alone quantizer to loops with 2nd and 4th order 
dynamics, which results in 1st, 3rd, and 5th order quantization noise-shaping, respectively. We 
recommend first reading [1] to understand the VCO-based quantizer architecture, as well as the 
tradeoffs for the quantizer compared to a more traditional FLASH-based quantizer. For a point of 
comparison, the 2nd order loop filter in this tutorial is intended to approximate the implementation 
reported in [1]. 
 
Although MATLAB is not required for CppSim simulations, we provide scripts to post process the 
simulation results, and additionally we provide a MATLAB script for calculating continuous time 
4th order loop filter coefficients in the presence of excess loop delay. This second script makes use 
of the Delta Sigma Toolbox [2], a well-known tool that is currently available as a free download 
from the MATLAB Central File Exchange. 
 
[1] M. Straayer, and M.H. Perrott, “A 12-Bit, 10-MHz Bandwidth, Continuous-Time Σ∆ ADC 
With a 5-Bit, 950-MS/s VCO-Based Quantizer,” IEEE JSSC, Vol. 43, No. 4, April 2008, pp. 805-
814 
 
[2] R. Schreier, Delta Sigma Toolbox [online]. 
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=19&objectType=file
. 
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VCO-Based Quantizer Background 
 
In Fig. 1, we show a simple VCO-based quantizer implementation that requires a set of standard 
registers, XOR gates, and a final adder stage. We see that the relative simplicity of this circuit 
allows high speed operation with small latency, which are important characteristics when placing 
the VCO-based quantizer within a CT ADC structure. Note that in this structure, the proposed 
quantizer expands the number of delay elements such that the number of transitions per clock 
period is smaller than that number of elements. 
 

 
Figure 1: High-speed implementation of a VCO-based quantizer. 

 
The binary sequences shown in Fig. 1 are useful for understanding the operation of the high speed 
quantizer structure. The key idea is to observe whether a given VCO delay cell undergoes a 
transition within a given clock period by comparing samples of its current and previous states with 
an XOR operation. The number of VCO delay cells that undergo a transition within a given clock 
period is a function of the delay through each stage as set by the Vtune voltage, which yields the 
quantized value of the voltage Vtune that we seek. 
 

 
 

Figure 2: Block diagram of the VCO-based quantizer’s behavioral model. 
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A key observation offered by Fig. 1 is that the quantization noise is first-order noise-shaped by 
virtue of the first-order difference operation shown in the figure. In Fig. 2, we also see that the 
VCO phase noise is shaped as well, but the result of such shaping is a flat spectrum due to the 20 
dB/dec slope of the original phase-noise signal. In reality, the shaped VCO phase noise will also 
include 1/f noise, but this is ignored here for the sake of modeling simplicity. Also shown in Fig. 2 
is that the voltage-to-frequency tuning curve of a VCO is quite nonlinear in practice. The impact of 
such nonlinearity is to introduce harmonic distortion which can significantly degrade the SNDR 
performance of the quantizer.  
 
Design Goals for an Example VCO-Based Quantizer 
 
As an initial target for the VCO-based quantizer, we set the following specifications: 
 

• 950MHz sampling rate (Fs) 
 
• Nominal delay per stage of twice the minimum inverter delay of 30-35ps, or 65ps 

 
• Kv near 750MHz/V 

 
• 5-10% tuning non-linearity  

 
• -100dBc/Hz VCO phase noise at 1MHz offset frequency 

 
• 20MHz analog input bandwidth 

 
If we assume that the nominal oscillator frequency, FVCO, is half of its maximum value (such that 
half of the elements transition for zero input), then we are left with requiring a sampling rate that is 
four times the nominal VCO frequency. Thus, we have the number of stages, N, to be 
 

N = 2/Tdelay/Fs = 31, 
 
which is equivalent to 5-bits. The Kv near 750MHz/V then restricts the maximum input signal to 
be ±300mV. 
 
With the high-level parameters of the quantizer now in place, we are ready to begin simulating a 
stand-alone VCO-based quantizer in order to evaluate its performance. 
 
 
Basic VCO-Based ADC Simulations Using Sue2 and CppSimView 
 
In this section, the user will be guided through basic tasks such as opening the ADC example 
within the Sue2 schematic editor and running basic CppSim simulations. 

A. Opening Sue2 Schematics 
• Click on the Sue2 icon to start Sue2, and then select the VCO_ADC_example library 

from the schematic listbox. The schematic listbox should now look as follows: 
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• Click on the VCO_ADC_testbench schematic. The schematic window should now 
display the input signal blocks as well as two ADC blocks as shown below:  
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• The key blocks in the testbench are the stand-alone VCO-based quantizer ADC, 
adc_sd0, and the second-order ΣΔ ADC, adc_sd2. The “0” suffix indicates that there is 
no loop filter preceding the VCO-based quantizer, in contrast to a “2” suffix for an 
ADC with second-order dynamics, and later a “4” for a fourth-order loop filter. 

 
• After clicking on adc_sd0, press e to descend into its schematic.  You will see the 

schematic depicted below, which under normal conditions includes gain, noise, and the 
vco_quantizer block. The vco_quantizer block is a module with coded functionality, 
which can be viewed by double-clicking on the cell and then selecting the Edit 
CppSim Code button. 

 
After closing any the vco_quantizer cell window, you may now press Ctrl+e to return 
to the testbench top level. 

 

 
 

• Descend into adc_sd2 (press e). Now in addition to the vco_quantizer cell, as shown 
below there are two DAC cells, dac_rz and dac nrz, a 2nd order loop filter, 
second_order_loopfilter, and some additional scale factors and noise contributions. 
These cells are all coded with behavioral models directly, and include many 
fundamental as well as non-ideal models for inter-symbol interference, noise, and 
mismatch.  
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You may now press Ctrl+e to return to the testbench top level. 
 
• The key signals present in the testbench are clearly: 

 
o ref: The sampling clock, nominally at 950MHz. 

 
o vin: This is the input signal to the ADC, although its amplitude is modified 

within  adc_sd0 for reasons that will be more clear later in the tutorial.  
 

o out_sd0: This is the digitized output of the converter. 
 
The model is setup in a way that you can bring the three parameters fin, ain, and fref easily 
from the simulation file to control the input signals.   

B. Running the CppSim Simulation 
 

• Within Sue2, Click on Tools and then CppSim Simulation.  The CppSim Simulation 
Window should appear as shown below. 
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• Double click on the Edit Sim File button.  An emacs window should appear that 
indicates that the number of simulation steps, num_sim_steps, is set to 8e6 and the 
timestep, Ts, is set to 1/350e9.  Also note that the output files will be triggered by ref 
and begin at 2e-6. You can close the emacs window if you like. 

 
• Click on the Compile/Run button to launch the simulation. 

 
• Click on the CppSimView icon on your desktop to start the CppSim viewer. (You 

don’t have to wait until the simulation is completed!) 
 
• Click on the No Output File radio button and select test.tr0 as the output file. 
 
• Click on the No Nodes radio button to load in the simulated signals. CppSimView 

should now appear as shown below. 
 



 12

 
 

C. Plotting the Time Domain Results 
 
Given the above simulation, we will now take a look at the output signals.  
 

• In the CppSimView window, double-click on signals out_sd0 and out_sd0. You should 
see the waveforms shown below.  

 

 
 

• In the CppSimView window, click on Zoom. The waveform window will include 
buttons as shown below. 
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• Click on the Zoom button in the waveform window, and then zoom in several times in 

the 10μs to 12μs range until you observe the waveform below: 
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• Notice that both outputs appear to have the same amplitude and phase, and it is difficult 
to judge the relative performance of the two converters. To see the effect of noise-
shaping and non-linearity suppression, we need to view the outputs in the frequency 
domain.  

 
Post-Processing the Simulation Results Using a MATLAB Script 

 
While CppSim has a few built-in functions for frequency domain analysis, in this case we find it 
convenient to use a customized script in MATLAB. The provided script, post.m, also can calculate 
SNR and SNDR, or other metrics as required by the designer. 

 
• Open MATLAB and set the working directory to the simulation results folder. For 

example: 
 
>> cd C:\CppSim\SimRuns\VCO_ADC_example\VCO_ADC_testbench 
 
• Run the post-processing script post.m by typing post into the command window 

 
>> post 

 
• After MATLAB completes processing the data, you should see the ADC output 

spectrum for each of the converters as shown below: 
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• We observe that the spectrum of the stand-alone VCO-based quantizer does indeed 

have 1st order noise-shaping, and that the floor is filled in with thermal noise. 
Additionally, the distortion of the VCO-based quantizer is very high, and limits the 
SNDR in this case to only 34dB. 

 
• In the frequency domain, we can now see that the 2nd order ΣΔ ADC output is much 

cleaner than that of the VCO-based quantizer, despite the very similar appearance of 
the outputs in the time domain. The non-linearity of the VCO-based quantizer has been 
suppressed here by over 40dB, and the third-order quantization noise-shaping is also 
evident.  

 
Although the VCO-based quantizer non-linearity has been improved, it is still the dominant source 
of distortion in the converter. To improve this situation, its linearity can be improved either with 
circuit design techniques or by increasing the gain of the loop filter. To illustrate the latter option, 
we now examine a 4th order loop filter, but keep the rest of the ADC the same, including the VCO-
based quantizer and feedback DACs. 
 
Design of a 4th Order Loop Filter 
 
In this part of the tutorial, we will explain the design a 4th order loop filter by following along with 
a MATLAB script. As mentioned in the Introduction, the script uses the Delta Sigma Toolbox 
which you should download and familiarize yourself in order to fully benefit from this section. The 
script filename is loop_filter_calc_params_sd4.m, and it should be located in the same 
SimRuns directory as post.m. You may open this file now, as we will be referring to it 
throughout this section. 

A. Ideal Noise Transfer Function Design 
 
A simple discrete-time model without excess loop delay is shown below for the VCO-based ADC. 
 

 
 

In this figure, the overall open loop gain can be expressed by the product of the three blocks as 
 

A(z) = Adac1Alf(z)Avco-q, 
 
and the noise transfer function (NTF), H(z), can be expressed as  
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H(z) = 1/(1+A(z)). 

 
The signal transfer function (STF), G(z), is then 
 

G(z) = Alf(z)Avco-q/(1+A(z)). 
 
Assuming no excess loop delay, the discrete-time loop filter can easily be designed using the Delta 
Sigma Toolbox, and the results can be plotted with the following MATLAB commands: 
 
% Setup parameters 
Fs = 950e6; 
BW_analog = 20e6; 
R = 25; 
  
% Synthesize ideal NTF given input parameters 
H = synthesizeNTF(4,R,1); % Fourth order optimized for 20MHz 
A = 1/H-1; % Calculate ideal open loop TF for chosen NTF 
 
% Plot ideal NTF  
f = [linspace(0,0.75/R,100) linspace(0.75/R,1,500)]; 
s = j*2*pi*f; 
z = exp(s); 
z_d = filt([0 1],1,1); 
  
figure(1); clf; 
subplot(321); 
plot(f,dbv(evalTF(H,z)),'k','Linewidth',2); 
axis([0 0.5 -90 40]); 
hold on; 
grid on; 
title('Desired NTF'); 
  
% Plot ideal STF in black  
subplot(323); 
plot(f,dbv(evalTF(A/(1+A),z)),'k','Linewidth',2); 
axis([0 0.5 -20 40]); 
hold on; 
grid on; 
title('Desired STF'); 
 
% Plot ideal impulse response in black  
subplot(325); 
imp_l = 20; 
y = impulse(A/(1+A),1:imp_l); 
stem(1:imp_l,y,'k','Linewidth',2); 
hold on; 
axis([0 imp_l -2 2]); 
title('Desired Impulse Response'); 
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You can either run the entire script, cut and paste the above text into the MATLAB command 
window, or if Cell Mode is enabled, press “Shift + Ctrl + Enter” when the cursor is at the top of 
the file. At this point the plot should look appear like the figure below 
 

 
 

B. Including Excess Loop Delay 
 
In practice, a continuous-time fourth-order loop must take into consideration the excess loop delay, 
which is found in [1] to typically be about 1.25 clock cycles. For simplicity, here we approximate 
the loop delay as simply equal to 1 clock period without significant error. To compensate for this 
delay, a minor compensation loop can be included around the quantizer (as seen in the 2nd order 
CppSim cell adc_sd2). In this case, the additional hardware required is a DAC [3] whose gain can 
be adjusted appropriately. 
 
[3] S. Yan and E. Sanchez-Sinencio, “A Continuous-Time ΣΔ Modulator With 88-dB Dynamic 
Range and 1.1-MHz Signal Bandwidth,” IEEE JSSC, Vol. 39, pp. 75–86, January 2004. 
 
Thus, a more complete model for the VCO-based ADC is shown below that includes a single clock 
delay, as well as the second DAC structure.  
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Although the desired NTF is still the same, we have a new expression for H(z) now given by 
 

H(z) = 1/[1+ Avco-q(Adac1Alf(z) + Adac2)z-1]. 
 
The expression for the STF, G(z), is also modified to be 
 

G(z) = Alf(z)Avco-qz-1/[1+ Avco-q(Adac1Alf(z) + Adac2)z-1]. 
 
Therefore, we need a way to calculate the new values for Alf(z) and Adac2 in order to match both 
the NTF and STF of the original loop. To do this, we first note that  
 

H(z) = 1/[1+ (A(z) + K)z-1],  
 

Where K = Adac2Avco-q, and A(z) is the open-loop gain as defined earlier. For a given value of K, 
we can then choose a new A’(z) that results in the desired H(z), as in 
 

A(z) = (A’(z) + K)z-1, 
A’(z) = A(z)z – K. 

 
The MATLAB script illustrates the effect of K on the resulting signal transfer function by stepping 
K from 0 to 1 by increments of 0.25. 
 
% Now include the excess loop delay, vary the gain of the minor  
% loop DAC to compensate for the delay, and look at the effects  
% on the STF and the impulse response 
k = 0:0.25:1; 
k_l = length(k); 
cmap = colormap(jet(k_l)); 
for i = 1:k_l, 
    % Pick a DAC gain 
    K = filt(k(i),1,1); 
     
    % Calculate the new discrete-time open loop TF "Ad" that has  
    % the same NTF as the ideal "A" 
    Ad = A*tf([1 0],1,1)-K;  
  
    % Plot the effect on the NTF 
    subplot(321); 
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    plot(f,dbv(evalTF(1/(1+(Ad+K)*z_d),z)),'Color',cmap(i,:)); 
    hold on; 
    grid on; 
    title('NTF for varied DAC gains'); 
     
    % Plot the effect on the STF 
    subplot(323); 
    plot(f,dbv(evalTF(Ad/(1+(Ad+K)*z_d),z)),'Color',cmap(i,:)); 
    hold on; 
    grid on; 
    title('STF for varied DAC gains'); 
  
    % and plot the effect on the impulse response 
    subplot(325); 
    y = impulse(Ad/(1+(Ad+K)*z_d),1:imp_l); 
    stem(1:imp_l,y,'Color',cmap(i,:)); 
    hold on; 
    title('Impulse response for varied DAC gains'); 
end 
 
Again run the above code using your preferred method, and you should then see the plot now look 
like 
 

 
 
Notice that for each value of K, the NTF is unchanged. However, the STF is clearly altered, as 
seen both in the frequency domain as well as in the time-domain impulse response. Thankfully, by 
picking K to be equal to 0.5, the STF is almost identical to the original response. 
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C. Convert from Discrete to Continuous Time 
 
Now we will convert the discrete-time loop filter transfer function into a continuous-time filter, 
and plot the resulting magnitude and phase response of the open-loop gain. You can run the 
following section of MATLAB code now. 
 
%% Based on these results, calculate the final CT open loop TF 
k = 0.5; 
K = filt(k,1,1); 
Ad = A*tf([1 0],1,1)-K; % for making NTF equal to ideal 
Ad.Ts = 1/Fs; 
Ac = d2c(Ad,'tustin'); 
  
% Plot the open and closed loop magnitude response 
f = Fs*[linspace(0,0.75/R,100) linspace(0.75/R,1,500)]; 
subplot(222); 
semilogx(f,dbv(squeeze(freqresp(Ac,2*pi*f))),'r','LineWidth',1.5); 
grid on; 
hold on; 
axis([1e6 1e9 -20 100]); 
title('Final Open-Loop Magnitude Response'); 
  
% Plot the open and closed loop phase response 
subplot(224); 
semilogx(f,angle(squeeze(freqresp(Ac,2*pi*f))),'r','LineWidth',1.5); 
grid on; 
hold on; 
axis([1e6 1e9 -4 4]); 
title('Final Open-Loop Phase Response'); 
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D. Calculating Loop Filter Values 
 
Once the continuous-time open-loop transfer function has been established, we can now calculate 
the parameters for the loop filter based on the assumptions for Kv, DAC gains, etc. Run the last 
section of MATLAB code now. 
 
%% Use the other loop parameters to design the optimal 4th order filter 
Kv = 7.35e8;                % Hz/V 
Avco = 2*pi*Kv/Fs;          % rad/sample/V 
Adac1 = 640e-6*31/pi;       % A/rad/sample 
Adac2 = k/Avco;             % V/rad/sample 
Alf_optimal = Ac/Avco/Adac1; 
 
Alf_optimal = tf(Alf_optimal) 
 
On the MATLAB command window you should see the calculated loop filter values to be 
 
Transfer function: 
-5.429 s^4 + 2.433e010 s^3 + 7.673e018 s^2 + 1.678e027 s + 1.676e035 
-------------------------------------------------------------------- 
   s^4 - 2.328e-009 s^3 + 1.224e016 s^2 + 3.751e008 s + 1.745e031 
 
Simulating the 4th Order Loop Filter 
 
After calculating the loop filter coefficients for 4th order dynamics, with NTF zeros optimized for a 
20MHz bandwidth, we now proceed to simulate a new ADC with components otherwise identical 
to the ΣΔ ADC adc_sd2 simulated earlier. 
 

• Open Sue2 again to the same VCO_ADC_testbench that was simulated earlier. We 
will now place a new 4th order ΣΔ ADC cell into this testbench for comparison against 
the other two ADC. 

 
• From the icons1 window, select the VCO_ADC_example library from the pulldown 

menu, and then place adc_sd4 into the VCO_ADC_testbench. 
 

• Define the inputs and output of adc_sd4 following the convention of the other ADC in 
the testbench. The output should be named out_sd4, the input should be vin and the 
clock should be ref. If your schematic is functionally equivalent to the schematic 
shown below, you should then save the testbench. 
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• Descend into adc_sd4 by selecting the cell and pressing “e”. We will now edit the 
parameters of the loop filter to correspond to the values calculated by the MATLAB 
script earlier.  

 
• Double-click on the fourth_order_loopfilter block and enter in the respective 

coefficients. The window should look like this before clicking the Done button: 
 

 



 23

 
• Save the adc_sd4 schematic and return to the testbench by pressing “Ctrl + e”. We are 

now ready to simulate the new ADC. 
 

• Either go to the CppSim Run Menu and click on the Compile/Run button, or in 
MATLAB type  

 
>> cppsim  
 
from the “SimRuns/VCO_ADC_example/VCO_ADC_testbench/” simulation directory. 
The simulator should then start, and in this case you should wait a few minutes for the 
simulation to finish.  

 
• From the MATLAB “SimRuns/VCO_ADC_example/VCO_ADC_testbench/” 

directory, run post.m by typing into the command window: 
 

>> post 
 

• The post-processing results should generate a new MATLAB figure that includes the 
simulation results from all three ADC in the testbench. The figure should appear as 
shown below: 

 

 
 

Here, we see that the 4th order loop filter further suppresses the VCO-based quantizer non-
linearity, and the SNR/SNDR performance numbers are now very similar. 
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Conclusion 
 
In this tutorial, we have presented the simulation of a VCO-based quantizer, a 2nd order, and a 4th 
order ΣΔ ADC. In addition, we have shown that simulating within the MATLAB environment can 
be very efficient and allow for custom post-processing of CppSim outputs. Finally, we have 
described an example design flow for calculating the coefficients of a 4th order loop filter using 
MATLAB scripts. 
 
Although we have not explored issues such as mismatch and metastability, this capability is 
included in the simulation testbench, and the user is encouraged to play with these parameters to 
observe the effect on the overall performance. 
 


