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What is a Phase-Locked Loop (PLL)?
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VCO efficiently provides oscillating waveform with 
variable frequency
PLL synchronizes VCO frequency to input reference 
frequency through feedback
- Key block is phase detector

Realized as digital gates that create pulsed signals



3M.H. Perrott

Integer-N Frequency Synthesizers

Use digital counter structure to divide VCO frequency
- Constraint:  must divide by integer values

Use PLL to synchronize reference and divider output
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Integer-N Frequency Synthesizers in Wireless Systems

Design Issues:  low noise, fast settling time, low power
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Fractional-N Frequency Synthesizers

Dither divide value to achieve fractional divide values
- PLL loop filter smooths the resulting variations

Very high frequency resolution is achieved
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Going Digital …

Digital loop filter:  compact area,  insensitive to leakage
Challenges: 
- Time-to-Digital Converter (TDC)
- Digitally-Controlled Oscillator (DCO)

Staszewski et. al.,
TCAS II, Nov 2003
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Outline of PLL Short Course

Analog frequency synthesizers
- Integer-N synthesizers and PLL background
- Fractional-N synthesizers

Digital frequency synthesizers
- Modeling and noise analysis
- Time-to-digital conversion
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Outline of Integer-N Frequency Synthesizer Talk

PFD
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Overview of PLL Blocks
System Level Modeling
- Transfer function analysis
- Nonlinear behavior
- Type I versus Type II systems

Noise Analysis
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Popular VCO Structures
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-1

LC Oscillator:  low phase noise, large area
Ring Oscillator:  easy to integrate, higher phase noise
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Model for Voltage to Frequency Mapping of VCO
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Time-domain frequency relationship (from previous 
slide)

Time-domain phase relationship

Model for Voltage to Phase Mapping of VCO

1/Fvco= α

1/Fvco= α+ε

out(t)

out(t)

Intuition of integral relationship between frequency and 
phase:
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Frequency-Domain Model for VCO

Time-domain relationship (from previous slide)

Corresponding frequency-domain model

Laplace-Domain
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Divider

Implementation

Time-domain model
- Frequency:

- Phase:

out div(t)

div(t)

out(t)

N

out(t)

count value

N = 6

Counter
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Frequency-Domain Model of Divider

Time-domain relationship between VCO phase and 
divider output phase (from previous slide)

Corresponding frequency-domain model (same as 
Laplace-domain)

out(t) Φout(t)

N
Divider

div(t) Φdiv(t)1

Divider
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Phase Detector (PD)

XOR structure
- Average value of error pulses corresponds to phase error
- Loop filter extracts the average value and feeds to VCO
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XOR Phase Detector Characteristic
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Frequency-Domain Model of XOR Phase Detector

Assume phase difference confined within 0 to π radians
- Phase detector characteristic looks like a constant gain 

element 

Corresponding frequency-domain model
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Loop Filter

Consists of a lowpass filter to extract average of 
phase detector error pulses
Frequency-domain model

First order example
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Overall Linearized PLL Frequency-Domain Model

Combine models of individual components
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Open Loop versus Closed Loop Response

Frequency-domain model

Define A(f) as open loop response
N
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Define G(f) as a parameterizing closed loop function
- More details later in this lecture
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Classical PLL Transfer Function Design Approach

1. Choose an appropriate topology for H(f)
Usually chosen from a small set of possibilities

2. Choose pole/zero values for H(f) as appropriate for 
the required filtering of the phase detector output

Constraint:  set pole/zero locations higher than 
desired PLL bandwidth to allow stable dynamics to 
be possible

3. Adjust the open-loop gain to achieve the required 
bandwidth while maintaining stability

Plot gain and phase bode plots of A(f)
Use phase (or gain) margin criterion to infer stability
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Example:  First Order Loop Filter

Overall PLL block diagram

Loop filter
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Closed Loop Poles Versus Open Loop Gain

Higher open loop gain leads to an increase in Q of 
closed loop poles
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Corresponding Closed Loop Response

Increase in open loop gain leads to
- Peaking in closed loop frequency response
- Ringing in closed loop step response
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The Impact of Parasitic Poles

Loop filter and VCO may have additional parasitic 
poles and zeros due to their circuit implementation
We can model such parasitics by including them in 
the loop filter transfer function
Example:  add two parasitic poles to first order filter

C1

R1e(t) v(t)
Parasitics
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Closed Loop Poles Versus Open Loop Gain
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Corresponding Closed Loop Response

Increase in open loop gain now eventually leads to 
instability
- Large peaking in closed loop frequency response
- Increasing amplitude in closed loop step response

0 dB

Closed Loop Frequency Response Closed Loop Step Response

1

TimeFrequency

A

C

B

CB

A
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Response of PLL to Divide Value Changes

Change in output frequency achieved by changing the 
divide value
Classical approach provides no direct model of 
impact of divide value variations
- Treat divide value variation as a perturbation to a linear 

system
PLL responds according to its closed loop response
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Response of an Actual PLL to Divide Value Change

Example:  Change divide value by one
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What Happens with Large Divide Value Variations?

PLL temporarily loses frequency lock (cycle slipping 
occurs)

- Why does this happen?
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Recall Phase Detector Characteristic

To simplify modeling, we assumed that we always 
operated in a confined phase range (0 to π)
- Led to a simple PD model

Large perturbations knock us out of that confined 
phase range
- PD behavior varies depending on the phase range it 

happens to be in

Φref - Φdiv
ππ/2−π/2−π 0
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Cycle Slipping

Consider the case where there is a frequency offset 
between divider output and reference
- We know that phase difference will accumulate

Resulting ramp in phase causes PD characteristic to 
be swept across its different regions (cycle slipping)
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Impact of Cycle Slipping

Loop filter averages out phase detector output
Severe cycle slipping causes phase detector to 
alternate between regions very quickly
- Average value of XOR characteristic can be close to 

zero
- PLL frequency oscillates according to cycle slipping
- In severe cases, PLL will not re-lock

PLL has finite frequency lock-in range!

π−π 3π nπ (n+2)π

1

-1

XOR DC characteristic
cycle slipping

Φref - Φdiv
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Back to PLL Response Shown Previously

PLL output frequency indeed oscillates
- Eventually locks when frequency difference is small enough

- How do we extend the frequency lock-in range?
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Phase Frequency Detectors (PFD)
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Example:  Tristate PFD



36M.H. Perrott

Tristate PFD Characteristic

Calculate using similar approach as used for XOR 
phase detector

Note that phase error characteristic is asymmetric 
about zero phase
- Key attribute for enabling frequency detection
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PFD Enables PLL to Always Regain Frequency Lock

Asymmetric phase error characteristic allows positive 
frequency differences to be distinguished from 
negative frequency differences 
- Average value is now positive or negative according to 

sign of frequency offset
- PLL will always relock

Φref - Φdiv2π 4π 2nπ
−2π

1

-1
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cycle slipping

0
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Another PFD Structure

XOR-based PFD
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XOR-based PFD Characteristic

Calculate using similar approach as used for XOR phase 
detector

Phase error characteristic asymmetric about zero phase
- Average value of phase error is positive or negative during 

cycle slipping depending on sign of frequency error

2ππ−2π 5π4π
−3π

1
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avg{e(t)}

phase detector
range = 2π

gain = 1/π

Φref - Φdiv0
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Linearized PLL Model With PFD Structures

Assume that when PLL in lock, phase variations are 
within the linear range of PFD
- Simulate impact of cycle slipping if desired (do not 

include its effect in model)
Same frequency-domain PLL model as before, but 
PFD gain depends on topology used
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Type I versus Type II PLL Implementations

Type I: one integrator in PLL open loop transfer 
function
- VCO adds on integrator
- Loop filter, H(f), has no integrators

Type II:  two integrators in PLL open loop transfer 
function
- Loop filter, H(f), has one integrator
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DC output range of gain block versus integrator

Issue:  DC gain of loop filter often small and PFD 
output range is limited
- Loop filter output fails to cover full input range of VCO

VCO Input Range Issue for Type I PLL Implementations

PFD
Loop
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Options for Achieving Full Range Span of VCO

Loop
Filter

D/A

e(t) v(t)
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Tune

No
Integrator

Loop
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Type I
- Add a D/A converter to provide coarse tuning

Adds power and complexity
Steady-state phase error inconsistently set

Type II
- Integrator automatically provides DC level shifting

Low power and simple implementation
Steady-state phase error always set to zero
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A Common Loop Filter for Type II PLL Implementation

Use a charge pump to create the integrator
- Current onto a capacitor forms integrator
- Add extra pole/zero using resistor and capacitor

Gain of loop filter can be adjusted according to the 
value of the charge pump current
Example:  lead/lag network

C1
C2

R1

v(t)e(t) Charge
Pump

i(t)
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Charge Pump Implementations

Switch currents in and out:

e(t)down(t) e(t)

Iout(t)
Iout(t)

Icp

Icp 2Icp

Icp Icp

Single-Ended Differential

up(t)



46M.H. Perrott

Modeling of Loop Filter/Charge Pump

Charge pump is gain element
Loop filter forms transfer function

Example:  lead/lag network from previous slide

e(t) v(t)
H(s)Icp

Loop
Filter

Charge
Pump
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PLL Design with Lead/Lag Filter

Overall PLL block diagram

Loop filter

Set open loop gain to achieve adequate phase margin
- Set fz lower than and fp higher than desired PLL bandwidth
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Closed Loop Poles Versus Open Loop Gain

Open loop gain cannot be too low or too high if 
reasonable phase margin is desired
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Impact of Parasitics When Lead/Lag Filter Used

We can again model impact of parasitics by including 
them in loop filter transfer function

Example:  include two parasitic poles with the lead/lag 
transfer function

C1
C2

R1

e(t) Charge
Pump

i(t) v(t)
Parasitics
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Closed Loop Poles Versus Open Loop Gain

Closed loop response becomes unstable if open loop 
gain is too high
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Negative Issues For Type II PLL Implementations

Parasitic pole/zero pair causes
- Peaking in the closed loop frequency response
- Extended settling time due to parasitic “tail” response

Bad for wireless systems demanding fast settling time
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Summary of Integer-N Dynamic Modeling

Linearized models can be derived for each PLL block
- Resulting transfer function model of PLL is accurate for 

small perturbations in PLL
- Linear PLL model breaks down for large perturbations 

on PLL, such as a large step change in frequency
Cycle slipping is key nonlinear effect

Key issues for designing PLL are
- Achieve stable operation with desired bandwidth
- Allow full range of VCO with a simple implementation

Type II PLL is very popular to achieve this 
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Frequency Synthesizer Noise in Wireless Systems

Synthesizer noise has a negative impact on system
- Receiver – lower sensitivity, poorer blocking performance- Transmitter – increased spectral emissions (output spectrum 

must meet a mask requirement)
Noise is characterized in frequency domain
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Phase noise is non-periodic

- Described as a spectral density relative to carrier power

Spurious noise is periodic

- Described as tone power relative to carrier power

Phase Noise Versus Spurious Noise

SΦout(f)
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Sources of Noise in Frequency Synthesizers

Extrinsic noise sources to VCO
- Reference/divider jitter and reference feedthrough
- Charge pump noise

PFD Charge
Pump
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Modeling the Impact of Noise on Output Phase of PLL

Determine impact on output phase by deriving 
transfer function from each noise source to PLL 
output phase
- There are a lot of transfer functions to keep track of!
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Simplified Noise Model

Refer all PLL noise sources (other than the VCO) to 
the PFD output
- PFD-referred noise corresponds to the sum of these 

noise sources referred to the PFD output
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Impact of PFD-referred Noise on Synthesizer Output

Transfer function derived using Black’s formula
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Impact of VCO-referred Noise on Synthesizer Output 

Transfer function again derived from Black’s formula
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A Simpler Parameterization for PLL Transfer Functions

Define G(f) as

- A(f) is the open loop transfer function of the PLL
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Parameterize Noise Transfer Functions in Terms of G(f)

PFD-referred noise

VCO-referred noise
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Parameterized PLL Noise Model

PFD-referred noise is lowpass filtered
VCO-referred noise is highpass filtered
Both filters have the same transition frequency values
- Defined as fo
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Impact of PLL Parameters on Noise Scaling

PFD-referred noise is scaled by square of divide value 
and inverse of PFD gain
- High divide values lead to large multiplication of this noise

VCO-referred noise is not scaled (only filtered)

Φvn(t)en(t)

Φout(t)Φc(t)
Φn(t)

Φnvco(t)Φnpfd(t)

fo
1-G(f)

fo
G(f)�πNα

VCO-referred
Noise

f
0

SEn
(f)

PFD-referred
Noise

1/T f0

SΦvn
(f)

-20 dB/dec

Divider Control
of Frequency Setting

(assume noiseless for now)

Sen
(f)�πNα

2

R
ad

ia
ns

2 /H
z

SΦvn(f)

f
0



64M.H. Perrott

Optimal Bandwidth Setting for Minimum Noise

Optimal bandwidth is where scaled noise sources meet
- Higher bandwidth will pass more PFD-referred noise
- Lower bandwidth will pass more VCO-referred noise
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Resulting Output Noise with Optimal Bandwidth

PFD-referred noise dominates at low frequencies
- Corresponds to close-in phase noise of synthesizer

VCO-referred noise dominates at high frequencies
- Corresponds to far-away phase noise of synthesizer
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Summary of Noise Analysis of Integer-N Synthesizers

Key PLL noise sources are
- VCO noise
- PFD-referred noise

Charge pump noise, reference noise, etc.

Setting of PLL bandwidth has strong impact on noise
- High PLL bandwidth suppresses VCO noise
- Low PLL bandwidth suppresses PFD-referred noise
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Fractional-N Frequency Synthesis

Divide value is dithered between integer values
Fractional divide values can be realized!

Very high frequency resolution

PFD
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Pump

 Nsd[k]

out(t)e(t)

Dithering
Modulator
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N[k]

Loop
Filter

Divider

VCO

ref(t)
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Fout = M.F  Fref

M.F

 Fref

Kingsford-Smith
US Patent 3,928,813

1974 (filing date)
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Outline of Fractional-N Synthesizers

Traditional Approach
Sigma-Delta Concepts
Synthesizer Noise Analysis
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Classical Fractional-N Synthesizer Architecture

Use an accumulator to perform dithering operation
- Fractional input value fed into accumulator
- Carry out bit of accumulator fed into divider

1-bit

PFD Loop
Filter

ref(t)

div(t)

out(t)

frac[k]
Accumulator

N/N+1

carry_out[k]

e(t)

Nsd[k] = N + frac[k]
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Accumulator Operation

Carry out bit is asserted when accumulator residue 
reaches or surpasses its full scale value
- Accumulator residue increments by input fractional 

value each clock cycle

residue[k]

carry_out[k]

frac[k] =.25

1-bit
M-bit

M-bit
frac[k]

Accumulator
carry_out[k]

residue[k]

clk(t)
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Fractional-N Synthesizer Signals with N = 4.25

Divide value set at N = 4 most of the time 
- Resulting frequency offset causes phase error to 

accumulate
- Reset phase error by “swallowing” a VCO cycle

Achieved by dividing by 5 every 4 reference cycles

phase error(t)

carry_out(t)

out(t)

div(t)

ref(t)

e(t)
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The Issue of Spurious Tones

PFD error is periodic
- Note that actual PFD waveform is series of pulses – the 

sawtooth waveform represents pulse width values over time
Periodic error signal creates spurious tones in synthesizer 
output
- Ruins noise performance of synthesizer

1-bit

PFD Loop
Filter

ref(t)

div(t)

out(t)

frac[k]
Accumulator

N/N+1

carry_out[k]

e(t)

Nsd[k] = N + frac[k]



73M.H. Perrott

The Phase Interpolation Technique

Phase error due to fractional technique is predicted 
by the instantaneous residue of the accumulator
- Cancel out phase error based on accumulator residue
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The Problem With Phase Interpolation

Gain matching between PFD error and scaled D/A 
output must be extremely precise
- Any mismatch will lead to spurious tones at PLL output
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Is There a Better Way?
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A Better Dithering Method:  Sigma-Delta Modulation

Sigma-Delta dithers in a manner such that resulting 
quantization noise is “shaped” to high frequencies

M-bit Input 1-bit
D/A

Analog Output

Input

Quantization
Noise

Digital Input
Spectrum

Analog Output
Spectrum

Time Domain

Frequency Domain

Σ−Δ

Digital Σ−Δ
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Linearized Model of Sigma-Delta Modulator

Composed of two transfer functions relating input and 
noise to output
- Signal transfer function (STF)

Filters input (generally undesirable)
- Noise transfer function (NTF)

Filters (i.e., shapes) noise that is assumed to be white

x[k] y[k] y[k]x[k]
q[k]

r[k]

z=ej2πfT

z=ej2πfT

NTF

STF

Σ−Δ

Hn(z)

Hs(z)

1

Sr(ej2πfT)= 1
12

Sq(ej2πfT)=    |Hn(ej2πfT)|21
12
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Example:   Cutler Sigma-Delta Topology

Output is quantized in a multi-level fashion
Error signal, e[k], represents the quantization error
Filtered version of quantization error is fed back to 
input
- H(z) is typically a highpass filter whose first tap value is 1

i.e., H(z) = 1 + a1z-1 + a2 z-2 L

- H(z) – 1 therefore has a first tap value of 0
Feedback needs to have delay to be realizable

x[k] u[k]

e[k]

y[k]

H(z) - 1
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Linearized Model of Cutler Topology

Represent quantizer block as a summing junction in 
which r[k] represents quantization error
- Note:

It is assumed that r[k] has statistics similar to white 
noise
- This is a key assumption for modeling – often not true!

x[k] u[k]

e[k]

y[k]

H(z) - 1

x[k] u[k]
r[k]

e[k]
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H(z) - 1
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Calculation of Signal and Noise Transfer Functions

Calculate using Z-transform of signals in linearized
model

- NTF:   Hn(z) = H(z)
- STF:   Hs(z) = 1

x[k] u[k]

e[k]

y[k]

H(z) - 1

x[k] u[k]
r[k]

e[k]

y[k]

H(z) - 1
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A Common Choice for H(z)
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Example:  First Order Sigma-Delta Modulator

Choose NTF to be

Plot of output in time and frequency domains with 
input of

0
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Example:  Second Order Sigma-Delta Modulator

Choose NTF to be

Plot of output in time and frequency domains with 
input of
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Example:  Third Order Sigma-Delta Modulator

Choose NTF to be

Plot of output in time and frequency domains with 
input of
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Observations

Low order Sigma-Delta modulators do not appear to 
produce “shaped” noise very well
- Reason:  low order feedback does not properly 

“scramble” relationship between input and quantization 
noise

Quantization noise, r[k], fails to be white
Higher order Sigma-Delta modulators provide much 
better noise shaping with fewer spurs
- Reason:  higher order feedback filter provides a much 

more complex interaction between input and 
quantization noise
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Warning:  Higher Order Modulators May Still Have Tones

Quantization noise, r[k], is best whitened when a 
“sufficiently exciting” input is applied to the modulator
- Varying input and high order helps to “scramble” 

interaction between input and quantization noise
Worst input for tone generation are DC signals that are 
rational with a low valued denominator
- Examples (third order modulator with no dithering):
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Fractional Spurs Can Be Theoretically Eliminated

See:
- M. Kozak, I. Kale, “Rigorous Analysis of Delta-Sigma 

Modulators for Fractional-N PLL Frequency Synthesis”, 
IEEE Transactions on Circuits and Systems I: 
Fundamental Theory and Applications, vol. 51, no. 6, pp. 
1148-1162, June 2004.

- S. Pamarti, I. Galton, "LSB Dithering in MASH Delta–
Sigma D/A Converters", IEEE Transactions on Circuits 
and Systems I: Regular Papers, vol. 54, no. 4, pp. 779 –
790, April 2007. 
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MASH topology

Cascade first order sections
Combine their outputs after they have passed through 
digital differentiators

Advantage over single loop approach
- Allows pipelining to be applied to implementation

High speed or low power applications benefit
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Calculation of STF and NTF for MASH topology (Step 1)

Individual output signals of each first order modulator

Addition of filtered outputs

x[k]

y[k]
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Calculation of STF and NTF for MASH topology (Step 1)

Overall modulator behavior

- STF:  Hs(z) = 1
- NTF:  Hn(z) = (1 – z-1)3
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Sigma-Delta Frequency Synthesizers

Use Sigma-Delta modulator rather than accumulator 
to perform dithering operation
- Achieves much better spurious performance than 

classical fractional-N approach
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Riley et. al.,
JSSC, May 1993
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The Need for A Better PLL Model

Classical PLL model
- Predicts impact of PFD and VCO referred noise sources
- Does not allow straightforward modeling of impact due 

to divide value variations
This is a problem when using fractional-N approach
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Fractional-N PLL Model

Perrott et. al. 
JSSC, Aug. 2002

Closed loop dynamics parameterized by
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Parameterized PLL Noise Model

Design revolves around choice of Σ−Δ and G(f)
- We will focus on G(f) design here
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A Well Designed Sigma-Delta Synthesizer

Order of G(f) is set to equal to the Sigma-Delta order
- Sigma-Delta noise falls at -20 dB/dec above G(f) bandwidth

Bandwidth of G(f) is set low enough such that synthesizer 
noise is dominated by intrinsic PFD and VCO noise
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Impact of Increased PLL Bandwidth

Allows more PFD noise to pass through
Allows more Sigma-Delta noise to pass through
Increases suppression of VCO noise
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Impact of Increased Sigma-Delta Order

PFD and VCO noise unaffected
Sigma-Delta noise no longer attenuated by G(f) such 
that a -20 dB/dec slope is achieved above its bandwidth
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Impact of Σ−Δ Quantization Noise on Synth. Output

PFD Loop
Filter
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Ref Out

M-bit 1-bit

Div

Σ−Δ
Modulator

Fout

Noise

Frequency
Selection

Frequency
Selection

Output
Spectrum

Quantization
Noise Spectrum

PLL dynamicsΣ−Δ

Lowpass action of PLL dynamics suppresses the 
shaped Σ-Δ quantization noise
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Impact of Increasing the PLL Bandwidth

Higher PLL bandwidth leads to less quantization noise 
suppression

PFD Loop
Filter
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Div

Σ−Δ
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Fout

Noise

Frequency
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Output
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Tradeoff:   Noise performance vs PLL bandwidth
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A Cancellation Method for Reducing Quantization Noise

Key idea:  quantization noise can be predicted within 
the digital Σ−Δ modulator structure
Issue:  cancellation is limited by analog matching
- Achieves < 20 dB cancellation in practice
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Pamarti et. al.,
TCAS II, Nov 2003
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Improved Cancellation Through Inherent Matching

Combined PFD/DAC structure achieves inherent 
matching between error and cancellation signal
- > 29 dB quantization noise cancellation achieved

PFD/DAC
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Improved Cancellation Through Continuous Calibration

Gain of DAC is adjusted in an adaptive manner using 
LMS algorithm
- > 30 dB noise cancellation achieved

PFD Charge
Pump
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Summary of Fractional-N Frequency Synthesizers

Fractional-N synthesizers allow very high resolution to 
be achieved with relatively high reference frequencies
- Cost is introduction of quantization noise due to dithering 

of divider
Classical fractional-N synthesizers used an accumulator 
for dithering
- Quantization noise cancellation was attempted

Sigma-Delta fractional-N synthesizers improve 
quantization noise by utilizing noise shaping techniques
- Key tradeoff:  PLL bandwidth versus phase noise
- Quantization noise cancellation has made a comeback
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