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Motivation

 A highly digital receive path is very attractive for 
achieving multi-standard functionality

 A key issue is achieving a wide bandwidth ADC with high 
resolution and low power
- Minimal anti-alias requirements are desirable for simplicity

Continuous-Time Sigma-Delta ADC structures
have very attractive characteristics for this space
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A Basic Continuous-Time Sigma-Delta ADC Structure

 Sampling occurs at the quantizer after filtering by H(s)
 Quantizer noise is shaped according to choice of H(s)

- High open loop gain required to achieve high SNR

We will focus on achieving an efficient implementation
of the multi-level quantizer by using a ring oscillator



Consider Time-to-Digital Conversion

 Quantization in time achieved with purely digital gates
- Easy implementation, resolution improving with Moore’s law

How can we leverage this for quantizing an analog voltage?



Adding Voltage-to-Time Conversion

 Analog voltage is converted into edge times
- Time-to-digital converter then turns the edge times into 

digitized values
 Key issues

- Non-uniform sampling
- Noise, nonlinearity

Naraghi, Courcy, Flynn, ISSCC 2009 

Is there a simple implementation for
the Voltage-to-Time Converter?



A Highly Digital Implementation

 A voltage-controlled ring oscillator offers a simple 
voltage-to-time structure
- Non-uniform sampling is still an issue

We can further simplify this implementation and 
lower the impact of non-uniform sampling



Making Use of the Ring Oscillator Delay Cells

 Utilize all ring oscillator outputs and remove TDC delays
- Simpler implementation

 TDC output now samples/quantizes phase state of oscillator



Improving Non-Uniform Sampling Behavior

 Oscillator edges correspond to a sample window of the input
 Sampling the oscillator phase state yields sample windows 

that are much more closely aligned to the TDC clk  



Multi-Phase Ring Oscillator Based Quantizer

 Adjustment of Vtune changes                                              
how many delay cells are visited                                             
by edges per Ref clock period
- Quantizer output corresponds to the number of delay cells 

that experience a transition in a given Ref clock period



More Details …

 Choose large enough number of stages, N, such that 
transitions never cycle through a given stage more than once 
per Ref clock period
- Assume a high Ref clock frequency (i.e., 1 GHz)

 XOR operation on current and previous samples provides 
transition count



A First Step Toward Modeling

 VCO provides quantization, register provides sampling
- Model as separate blocks for convenience

 XOR operation on current and previous samples 
corresponds to a first order difference operation
- Extracts VCO frequency from the sampled VCO phase signal

Wismar, Wisland,
Andreani, ESSCIRC 2006



Corresponding Frequency Domain Model

 VCO modeled as integrator 
and Kv nonlinearity

 Sampling of VCO phase 
modeled as scale factor of 1/T

 Quantizer modeled as 
addition of quantization noise

 Key non-idealities:
- VCO Kv nonlinearity
- VCO noise
- Quantization noise



Example Design Point for Illustration
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Simulated ADC Output Spectrum
 Ref clk:  1/T = 1 GHz 
 31 stage ring oscillator

- Nominal delay per 
stage: 65 ps

 KVCO = 500 MHz/V
- ±5% linearity

 VCO noise:  -100 dBc/Hz  
at 10 MHz offset



SNR/SNDR Calculations with 20 MHz Bandwidth
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Simulated ADC Output Spectrum
Conditions SNDR

Ideal 68.2 dB

VCO Thermal 
Noise 65.4 dB

VCO Thermal 
+ Nonlinearity 32.2 dB

VCO Kv nonlinearity is
the key performance

bottleneck
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Classical Analog Versus VCO-based Quantization

 Much more digital implementation
 Offset and mismatch is not of critical concern
 Metastability behavior is potentially improved
 Improved SNR due to quantization noise shaping

Implementation is high speed, low power, low area



Key Performance Issues:  Nonlinearity and Noise

 Very hard to build a 
simple ring oscillator 
with linear Kv

 Noise floor set by VCO 
phase noise is typically 
higher than for analog 
amplifiers at same power 
dissipation



What Can Analog Bring to the Table?

 We know how to build 
fairly linear gain blocks 
with relatively low noise
- For this simple function, 

analog offers relatively 
high speed, low area, low 
power

 Analog gain can reduce 
impact of noise in blocks 
that follow it 

Nonlinearity is still an issue



Massive Digital Processing Can Deal with Nonlinearity

 From ISSCC 2010:
- “A Mostly Digital Variable-

Rate Continuous-Time ADC 
ΔΣ Modulator”, Taylor, 
Galton

 We can also deal with 
nonlinearity in a more 
analog manner
- Avoids long calibration 

startup due to nonlinearity
- Allows high order noise 

shaping



Feedback Is Our Friend

 Issue:  must achieve a highly linear DAC structure
- Otherwise, noise folding and other bad things happen …

Iwata, Sakimura, TCAS II, 1999
Naiknaware, Tang, Fiez, TCAS II, 2000

 Combining feedback with                                    
front end gain acts to                             
suppress impact of quantizer                      
noise and nonlinearity
- Scale factor from input to                              

output is also better controlled
- Structure is a continuous-time Sigma-Delta ADC



A Closer Look at the DAC Implementation

 Consider direct 
connection of the 
quantizer output to a 
series of 1-bit DACs
- Add the DAC outputs 

together

What is so special about doing this?



Recall that Ring Oscillator Offers Implicit Barrel Shifting

 Barrel shifting 
through delay 
elements
- Mismatch between 

delay elements is 
first order shaped



Implicit Barrel Shifting Applied to DAC Elements

 Barrel shifting action of 
quantizer transferred to 
1-bit DAC elements

Miller, US Patent (2004) 

- Acts to shape DAC mismatch and linearize its behavior



A Geometric View of the VCO Quantizer/DEM and DAC



First Generation Prototype

 Second order dynamics achieved with only one op-amp
- Op-amp forms one integrator
- Idac1 and passive network form the other (lossy) integrator
- Minor loop feedback compensates delay through quantizer

 Third order noise shaping is achieved!
- VCO-based quantizer adds an extra order of noise shaping



Custom IC Implementing the Prototype

Straayer, Perrott
VLSI 2007

 0.13u CMOS
 Power:  40 mW
 Active area:  700u X 700u
 Peak SNDR:  67 dB (20 MHz BW)
 Efficiency:  0.5 pJ/conv. step



Design of the VCO Core Inverter Cell
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Tuning Characteristic

 31 stages
 Fast for good resolution (< 100 psec / stage)
 Large KVCO (600-700 MHz) with good dynamic range
 2 bits of coarse tuning for process variations
 < 8 mW for 1 GSPS 5-bit quantizer / DEM



Opamp Design is Straightforward

Simulated Performance:
 AV = 55 dB
 GBW = 2 GHz 
 PDISS = 15 mW

High SNR of
VCO-based

quantizer allows 
reduced

opamp gain (Av)



Primary Feedback DAC Schematic

 Fully differential RZ pulses
 Triple-source current steering
 IOFF is terminated off-chip



Measured Spectrum From Prototype
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Measured SNR/SNDR Vs. Input Amplitude (20 MHz BW)
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SNR
SNDR Kv nonlinearity 

limits SNDR to 
67 dB



How Do We Overcome Kv Nonlinearity to Improve 
SNDR?
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Voltage-to-Frequency VCO-based ADC (1st Order Σ−∆)

 In prior work, VCO frequency is desired output variable
- Input must span the entire non-linear voltage-to-frequency 

(Kv) characteristic to exercise full dynamic range
- Strong distortion at extreme ends of the Kv curve

32



Proposed Voltage-to-Phase Approach (1st Order Σ−∆)

 VCO output phase is now the output variable
- Small perturbation on Vtune allows large VCO phase shift
- VCO acts as a CT integrator with infinite DC gain

33
High SNDR requires higher order Σ−∆ …



Proposed 4th Order Architecture for Improved SNDR

 Goal:  ~80 dB SNDR with 20 MHz bandwidth
- Achievable with 4th order loop filter, 4-bit VCO-based quantizer
- 4-bit quantizer:   tradeoff resolution versus DEM overhead

 Combined frequency/phase feedback for stability/SNDR
34



Schematic of Proposed Architecture

 Opamp-RC integrators
- Better linearity than Gm-C, though higher power
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Schematic of Proposed Architecture

 Passive summation performed with resistors
- Low power
- Must design carefully to minimize impact of parasitic pole

36



Schematic of Proposed Architecture

 DEM explicitly performed on phase feedback
- NRZ DAC unit elements

 DEM implicitly performed on frequency feedback (Miller)
- RZ DAC unit elements

37



Behavioral Simulation (available at www.cppsim.com) 

 VCO Kv non-
linearity

 Device noise
 Amplifier finite 

gain, finite BW
 DAC and VCO 

unit element 
mismatch

Key Nonidealities

VCO nonlinearity is not the bottleneck for achievable SNDR!

85 dB SNDR!



Circuit Details
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VCO Integrator Schematic

 15 stage current 
starved ring-VCO 
- 7 stage ring-VCO 

shown for simplicity
- Pseudo differential 

control
- PVT variation 

accommodated by 
enable switches on 
PMOS/NMOS

 Rail-to-rail VCO 
output phase signals 
(VDD to GND)

Straayer, VLSI 2007
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VCO Quantizer Schematic

 Phase 
quantization 
with sense-
amp flip-flop 
- Single 

phase 
clocking

 Rail-to-rail 
quantizer 
output 
signals (VDD 
to GND)

Nikolic et al, JSSC 2000
41



Phase Quantizer, Phase and Frequency Detector
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 Highly digital 
implementation
- Phase sampled & 

quantized by SAFF
- XOR phase and 

frequency 
detection with FF 
and XOR

 Automatic DWA for 
frequency detector 
output code
- Must explicitly 

perform DWA on 
phase detector 
output code



Main Feedback DAC Schematic

 Low-swing 
buffers
- Keeps switch 

devices in 
saturation

- Fast “on” / Slow 
“off” reduces 
glitches at DAC 
output

- Uses external 
Vdd/Vss

 Resistor 
degeneration 
minimizes 1/f 
noise

Yan et al
JSSC 2004



Bit-Slice of Minor Loop RZ DAC

 RZ DAC unit elements transition every sample period
- Breaks code-dependency of transient mismatch (ISI)
- Uses full-swing logic signals for switching
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Opamp Schematic

 Modified nested Miller opamp
- 4 cascaded gain stages, 2 

feedforward stages
- Behaves as 2-stage Miller near 

cross-over frequencies
- Opamp 1 power is 2X of 

opamps 2 and 3 (for low noise)

Parameter Value
DC Gain 63 dB
Unity-Gain Frequency 4.0 GHz
Phase Margin 55°
Input Referred Noise 
Power (20 MHz BW)

11 uV 
(rms)

Power (VDD = 1.5 V) 22.5 mW

Mitteregger et al, JSSC 2006
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DEM Architecture (3-bit example)

 Achieves low-delay to allow 4-bit DEM at 900 MHz
- Code through barrel shift propagates in half a sample period

See also:
Yang

ISSCC 2008



Die Photo (0.13u CMOS)

Die photo courtesy of Annie Wang (MTL)
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 Active area
 0.45 mm2

 Sampling Freq
 900 MHz

 Input BW
 20 MHz

 Supply Voltage
 1.5 V

 Analog Power
 69 mW

 Digital Power
 18 mW



Measured Results

 78 dB Peak SNDR performance in 20 MHz
- Bottleneck:  transient mismatch from main feedback DAC

 Architecture robust to VCO Kv non-linearity

100,000 pt. FFT

Peak SNDR = 78.1 dB
Peak SNR = 81.2 dB
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Figure of Merit:  330 fJ/Conv with 78 dB SNDR



Transient DAC mismatch is likely the key bottleneck

Behavioral Model Reveals Key Performance Issue

 Amplifier 
nonlinearity 
degrades 
SNDR to 81 dB 

 DAC transient 
mismatch 
degrades 
SNDR to 78 dB
- DEM does 

not help this
- Could be 

improved 
with dual RZ 
structure



Conclusion

 VCO-based quantization is a promising component to 
achieve high performance Σ−∆ ADC structures
- High speed, low power, low area implementation
- First order shaping of quantization noise and mismatch
- Kv non-linearity can be a limitation

 Demonstrated a 4th-order CT ΔΣ ADC with a           
VCO-based integrator and quantizer
- Proposed voltage-to-phase conversion to avoid 

distortion from Kv non-linearity
- Achieved 78 dB SNDR in 20 MHz BW with 87 mW power

 Key performance bottleneck:  transient DAC mismatch
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