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Our Starting Point

" Questions:

= What advantages do optical components bring to
classical electronic applications?

= When merging optical and electronic components for

such applications, where are the best boundaries
between the two?

" Focus areas:
= Phase-locked loops

= Sampling, downconversion and digitization of
narrowband RF signals



The Attraction of Optical Components for Phase Locking
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" Mode-locked lasers provide optical clock streams
with excellent short term jitter characteristics

= Short term jitter < 10 fs is achievable

Can we lock an electrical clock to the
optical pulse stream AND maintain low jitter?




Optical/Electrical Phase Locked Loops
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" Generate a frequency tunable electronic clock source
by using a voltage controlled oscillator (VCO)

" Lock VCO output to pulse stream using an
optical/electrical synchronization circuit



Method 1 of Implementing the Synchronization Circuit
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A A“ JUL
U\ Lo **_I’C’\}”

AHI_IEM c — % VCO

Discharge  Load
Switch Capacitance

" Create an electrical square wave reference signal by
using a photodiode and discharge switch

" Lock the VCO output to the electrical reference signal
by using a conventional electronic phase locked loop



Key Idea of Method 1. Measure Phase Based on Edges
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" Relative phase positions of optical pulses are
captured by the edge locations of the electrical
reference waveform



Issue 1: Noise
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" The slope of the transition edges is limited by the
current/capacitance ratio at the photodetector output

" Higher edge slopes are desirable to achieve low noise

= Voltage noise present in the reference waveform
translates to timing jitter according to the edge slope

Achievable noise performance is limited by the I/C ratio of
the electronics (i.e., photodiode and the capacitive load it drives)




Issue 2: Sensitivity to Amplitude Variation
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" Practical pulse streams from mode-locked lasers
exhibit undesired amplitude variation

" Phase detection based on the edge-based approach
above translate pulse amplitude variation into phase
variation



Can We Do Better?



Proposed Approach
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" Move phase comparison into the optical domain

= Passing an optical pulse through an optical modulator
effectively samples its input value at the time

" Use photodetectors to detect the average power of the
modulator outputs
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Impact of VCO Output Phase Being Too Early
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" An imbalance of modulator output power levels causes a
difference in current between the top and bottom
photodetectors

= The resulting current causes the VCO input voltage to rise



Impact of VCO Output Phase Being Too Late
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" Current imbalance shifts the opposite way, so that the
VCO control voltage now starts to fall

Accurate measurement of phase error is achieved
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Approach is Insensitive to Amplitude Variations
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" Amplitude fluctuations impact the top and bottom
currents equally (at least to first order)

= The VCO control voltage remains undisturbed
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Actual Implementation
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" Use Mach-Zehnder interferometer within Sagnac-loop
= Robust against temperature fluctuations
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Measured Results

" Locking is achieved with > 1 MHz bandwidth
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Limitation in Achieving Low Absolute Jitter

" Noise of laser noise dominates at low frequencies
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Estimate of Relative Noise Between VCO and Laser

" A separate experiment led to the estimate below
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Optical Sampling of Electrical Signals

Electrical Input Signal
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" Optical modulator enables low jitter sampling of
electrical signal
" Applications:
= Input sampler for A/D converter

= A/D converters are often limited by jitter in sampling
process

= Sub-sampling downconverter for RF signal digitization
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Sub-sampled Downconversion of RF Signals
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" Sub-sampling a narrowband RF signal leads to a
baseband signal component

= We are purposefully aliasing the RF signal

" Good performance requires:
= RF signhal must be narrowband

» Use a resonant optical modulator to filter wider band RF
components

= Sampling process must have low jitter
= Optical sampling offers very low jitter (< 10 fs possible)
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Frequency Domain View of Sub-Sampling Downconversion
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" Optical pulse stream spectrum consists of equally
spaced impulses in frequency

= Impulse closest to RF signal downconverts it to baseband
20



Conversion to Electrical Domain

Electrical Input Signal
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" Photodiode used to convert modulated optical stream
to modulated current stream

= Issue: recombination in photodiode leads to parasitic
tails in response to input optical pulses

= We no longer have pulses that are well confined in time

" |ssue: how do we transfer optical sample information
to electrical samples?
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Transfer of Sampled Information to Electrical Domain

Electrical Input Signal

Laser Optical Pulse Stream l Modulated Current Stream
Optical liode ¥ > e

Modulator CLK CLK Sa_mpllng

{ y Window

T ChoId - Csample
" Switched capacitor network 1 1

= Captures charge over a given time window and transfers
to following stage

" Key issues:
= Finite resistance of switches leads to large voltage
deviations at photodiode output

= Parasitic tail of photodiode response causes “leakage” of
sample information to following electrical samples
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Consider Simply Storing Photodiode Charge

Electrical Input Signal

WAV

Laser Optical Pulse Stream l Modulated Current Stream

Optical liode ¥ [e
Modulator S?MQ
W W

T +
j:ChoId Vhold_/—/_/—
B CaoanA mnhntndindae criirrant Adi \I iNtN ~canacitn
JCOUI1IU IJIIU UuUuiluuTe vUulil Ul I Ul _y 1HI1LV uapau LV
= Use of a high Q capacitor prevents large instantaneous

voltage deviations at photodiode output
= Easily achieved with on-chip metal-metal capacitors
" [ssues:
= Voltage across capacitor grows unbounded!
= How do we transfer sample information?



Key Observation

Electrical Input Signal
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" We need only extract filtered baseband copy

= Explicit electronic sampling unnecessary if we use a
continuous-time A/D structure
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Continuous-Time Sigma-Delta A/D is a Nice Fit

Electrical Input Signal
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" Continuous-time Sigma-Delta digitizes its input signal
with the following characteristics:

= Filters input waveform according to continuous-time
filter design within A/D

= Current from DAC keeps the voltage across C,, 4 at a
constant value (along with a small amount of ripple)

= Keeps photodiode at a constant reverse-bias voltage
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Review of Continuous-Time (CT) Sigma-Delta Operation
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" Key idea: dither alow resolution quantizer output
such that its average tracks the A/D input

= A/D output must be digitally filtered to extract desired
signal

= A/D must run at a very high oversampling ratio

= [n our case: 1 GHz A/D sampling frequency for 2 MHz
Input signal bandwidth

= Oversampling ratio in this case: 250

= Filter within A/D, H(s), must be designed for appropriate
noise shaping and stable operation



Frequency Domain View of CT Sigma-Delta A/D
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" Sigma-Delta operation shapes quantization noise to
high frequencies

= Appropriate filtering of digitized output allows extraction
of desired baseband signal with high SNR
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Theoretical Limitations of Archi
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® 3 factors limit SNDR of receiver:

= Laser aperture jitter
= Modulator non-linearity
= Photodiode shot-noise
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" Aperture jitter set by laser, but photodiode power and

signal amplitude are variable

= What tradeoffs can we make to maximize SNDR?
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Theoretical Limitations of Architecture
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" Optimal SNDR achieved by reducing signal power to
lower distortion until comparable to shot noise floor



Theoretical Performance of Architecture
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—— CppSim: A C++ Behavioral Simulator

" CppSim behavioral simulator used to determine
overall theoretical performance of receiver/ADC

= Model includes circuit noise, non-linearity, finite gain,
loop delays, clock jitter, etc.

= Tutorial can be downloaded online:
http://www.cppsim.com

" Simulated SNDR ~ 57 dB in 2 MHz BW
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Custom ADC Implementation for Prototype
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= Differential signaling used for robust operation
" Standard second-order Sigma-Delta topology used for

Its simplicity and robustness



Custom ADC IC
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Technology: 0.18 um CMOS

Area: 3mm x 3mm (pad-

limited)

®" Precision: ~ 12 bit at 1 MHz
BW, OSR = 390

" Power: ~50 mW

" Fabricated by National
Semiconductor

" Funded by EPIC program
DARPA W911NF-04-1-0431
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Overall optical/electrical prototype developed in collaboration
with Jung-Won Kim and Prof. Franz Kaertner (MIT)
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Overall Downconversion/Digitization Prototype

" Optical

" Electrical input carrier frequency is 9.48
GHz with 1 Mbit/s GMSK modulation
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Measured Results

" Clean eye diagrams obtained
with 1 Mbit/s modulation at 9.48
GHz carrier frequency

- Peak SNDR: 22 dB (2 MHz BW)
- Peak SNR: 32 dB (2 MHz BW)
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Key Bottleneck — Nonlinearity and Loss in Optical Path
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Analysis of Achievable Performance
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" Next goal: demonstrate system at higher carrier frequency

= Aperture jitter of laser will limit achievable performance
= 42 dB SNDR (2 MHz BW) should be achievable at 40 GHz



Conclusions

" Optical components have the following benefits for
phase-locked loops, sampling, and downconversion:

= Mode-locked lasers provide extremely low jitter pulse
sequences

= Optical channels provide extremely high bandwidth

= Optical components allow extremely fast memoryless
processing of signals (such as multiplication)

" We demonstrated the following

= Low jitter phase-locked loop which leverages optical
pulses as input and optical/electronic phase detection

= Optical/electrical downconversion and digitization based
on optical sampling and electronic filtering

Many more exciting opportunities will arise as we obtain
higher integration levels for optical components
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