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Why Switch to MEMS-based Programmable Oscillators?

A part for each frequency 
and non-plastic packaging
- Non-typical frequencies 

require long lead times

Same part for all frequencies 
and plastic packaging
- Pick any frequency you want 

without extra lead time

Quartz Oscillators MEMS-based Oscillator

We can achieve high volumes at low cost using IC fabrication

source: www.ecliptek.com
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Architecture of MEMS-Based Programmable Oscillator

MEMS device provides high Q resonance at 5 MHz
- CMOS circuits provide DC bias and sustaining amplifier

Fractional-N synthesizer multiplies 5 MHz MEMS 
reference to a programmable range of 750 to 900 MHz
Programmable frequency divider enables 1 to 115 MHz 
output
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Compensation of Temperature Variation

High resolution control of fractional-N synthesizer allows 
simple method of compensating for MEMS frequency 
variation with temperature
- Simply add temperature sensor and digital compensation logic
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The Focus of This Talk

How do we achieve a fractional-N synthesizer with
low area, low power, and low design complexity?
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Analog Versus Digital Fractional-N Synthesizer?

Analog PLL wins in 0.18u CMOS for low power

Analog PLL

Digital PLL

+ Low power
- Large loop filter

(Higher power)

+ Smaller loop filter
- Difficult in 0.18 CMOS

Can we achieve a low area (and low power) analog PLL
with reduced design effort?
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The Issue of Area:  What Causes a Large Loop Filter?

Loop filter noise (primarily from charge pump) often 
dominates PLL phase noise at low offset frequencies
We will show that
- The common approach of reducing loop filter noise leads to 

increased loop filter area (i.e., C2 for charge pump PLL)
- We can instead increase PD gain to lower the impact of 

loop filter noise
Loop filter area can be smaller
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First Step:  Model PLL with Charge Pump Noise
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Increasing Ipump Reduces Input-Referred Loop Filter Noise

Area gets larger since C2 is typically increased
as well to maintain desired open loop gain
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Increasing PD Gain Reduces Impact of Loop Filter Noise

But how do we increase the PD gain?

Loop filter area does not need to become larger

f

VCO
Noise

Loop Filter
Noise

Output Phase Noise

Divider

PD

Gain
2  Kv

s

PFD VCO

out(t)ref(t)

div(t)

LFnoise

1
Nnom

LFnoise

2

PD Gain

Nnom
2

Z(s)

Loop Filter

Ipump

C2

PD

(t)

Nnom

Ipump

1

PD Gain

PD Gain

1

PD Gain
Keep Open Loop

Gain Constant

PD Gain Ipump

Impact of Loop Filter Noise on Output



11

PD Gain of Classical Tristate PFD

Compute gain by averaging Up/Down pulses vs. phase error
- Note that tristate PFD has a phase error range of 2 Ref periods
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Proposed Method of Increasing Phase Detector Gain

Reduce phase detection range to 1/4 of the Ref period
- Achieves 8X increase in phase detector gain

How do we capitalize on this reduced range in the filter?
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Simple RC Network Can Be Utilized

Achieves full voltage range at Vc1 as phase error is swept 
across the reduced phase detector range
Note: instead of being influenced by charge pump gain after 
the PD, we are influenced by (regulated) supply voltage

See also:  
Hedayati, Bakkaloglu

RFIC 2009
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Implementation of High Gain Phase Detector

Use 4X higher divider frequency
- Simple digital implementation
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Multi-Phase Pulse Generation (We’ll Use it Later…)
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Overall Loop Filter – Consider Using Charge Pump

Can we remove the charge pump to reduce
the analog design effort?

We can use the high gain PD in 
a dual-path loop filter topology
- But we want a simple design!

See also: 
Craninckx, 
JSSC, Dec 

1998
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Passive RC Network Offers a Simpler Implementation

Capacitive feedforward path 
provides stabilizing zero
Design effort is simply choosing 
switch sizes and RC values 
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The Issue of Reference Spurs

Ripple from Up/Down 
pulses passes through 
to VCO tuning input

Is there an easy way to
reduce reference spurs?
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Leverage Multi-Phase Pulsing

Ripple from Up/Down pulses 
blocked before reaching VCO
- Reference spurs reduced!
- Similar to sample-and-hold 

technique (such as Zhang et. 
al., JSSC, 2003)

There is a nice side benefit
to pulsing resistors…
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Pulsing Resistor Multiplies Resistance!

Resistor only passes current when pulsed on
- Average current through resistance is reduced according 

to ratio of On time, Ton, versus pulsing Period, Tperiod- Effective resistance is actual resistance multiplied by ratio 
Tperiod/Ton

Resistor multiplication allows a large RC time constant
to be implemented with smaller area
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Tperiod
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Parasitic Capacitance Reduces Effective Resistance

Spice simulation and measured results reveal that
>10X resistor multiplication can easily be achieved

Parasitic capacitance stores charge during the pulse 
“On” time
- Leads to non-zero current through resistor during pulse 

Off time
- Effective resistance reduced
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For robust stability, PLL zero 
should be set well below PLL 
bandwidth of 30 kHz
- Assume desired wz = 4 kHz
- Set Cf = 2.5pF (for low area)
- Required R3_eff = 16 MegaOhms

Large area

Proper choice of Ton and Tperiod allows 
R3_eff = 16 MegaOhms to be achieved with R3 = 500 kOhms!

Switched Resistor Achieves PLL Zero with Low Area
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The Issue of Initial Frequency Acquisition

During initial frequency acquisition, Vtune(t) must be 
charged to proper bias point
- This takes too long with R3_eff = 16 MegaOhms

How do we quickly charge capacitor C3 during initial
frequency acquisition?
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Utilize Switched Capacitor Charging Technique

Charge C3 high or low only when frequency error is detected
- No steady-state noise penalty, minimal power consumption
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CppSim Behavioral Simulation of Frequency Locking

Switched capacitor technique allows relatively
fast frequency locking
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CMOS and MEMS Die Photos Show Low Area of PLL

Active area:
- VCO & buffer & 

bias: 0.25mm2

- PLL (PFD, Loop 
Filter, divider):      
0.09 mm2

- Output divider: 
0.02 mm2

External supply
- 1.8/3.3V

Current (20 MHz 
output, no load)
- ALL:  3.2/3.7mA
- VCO: 1.3mA
- PLL & Output 

Divider: 0.7mA
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Measured Phase Noise (100 MHz output)

Suitable for most serial applications, embedded systems and 
FPGAs, audio, USB 1.1 and 2.0, cameras, TVs, etc. 

Integrated Phase Noise:
17 ps (rms) from 1 kHz to 40 MHz

Ref. Spur:  -65 dBc

-90 dBc/Hz

100 Hz 40 MHz30 kHz

-140 dBc/Hz
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Conclusion

A MEMS-based programmable oscillator provides an 
efficient solution for industrial clocking needs
- Programmability of frequency value simplifies supply chain 

and inventory management
- Leveraging of semiconductor processing, rather than 

custom tools for quartz, allows low cost and low lead times
Proposed fractional-N synthesizer allows low area, low 
power, and reduced analog design effort
- High gain phase detector lowers impact of loop filter noise
- Switched resistor technique eliminates the charge pump 

and reduces area through resistor multiplication
- Switched capacitor frequency detection enables reasonable 

frequency acquisition time with no noise penalty

Frequency references have entered the realm of
integrated circuit design and manufacturing
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Supplemental Slides
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Noise Analysis (Ignore Parasitic Capacitance of Resistors)

Assumption:  switched resistor time constants are 
much longer than “on time” of switches
- Single-sided voltage noise contributed by each resistor 

is simply modeled as 4kTReff (same as for a resistor of 
the equivalent value)

Note: if switched resistor time constants are shorter 
than “on time” of switches
- Resistors contribute kT/C noise instead of 4kTReff- We would not want to operate switched resistor filter in 

this domain since time constants would not be boosted 

Φref(t) R1_eff R2_eff

R3_eff

C1 C2 C3
Cf

Vtune

Φdiv(t)

8

2π

Voltage

Signal

4kTR1_eff 4kTR2_eff 4kTR3_eff

Vdd

2

PD
Gain

Supply
Gain



32

Issue:  Nonlinearity in Switched Resistor Loop Filter

Nonlinearity is caused by
- Exponential response of 

RC filter to pulse width 
modulation

- Variation of Thold due to 
Sigma-Delta dithering of 
divide value

Note:  to avoid additional 
nonlinearity, design divide 
value control logic to keep 
Ton  a constant value
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Nonlinearity Due to Pulse Width Modulation

Pulse width modulation 
nonlinearity is reduced 
as ratio ΔT/(R1C1) is 
reduced
- If ΔT/(R1C1) is small:

Keep Ton constant to 
avoid increased 
nonlinearity!
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Nonlinearity Due to Hold Time Variation

Hold time nonlinearity is 
reduced as changes in Thold
(due to divide value 
dithering) are reduced
- Reduce order of MASH Σ−Δ

Benefits are offset by 
reduced noise shaping of 
lower order Sigma-Delta

- Reduce step size of MASH 
Σ−Δ

Achieved with higher 
VCO frequency
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Nonlinearity Is Not An Issue For This Design

Folded quantization noise due to nonlinearity is reasonably 
below other noise sources for this design
- However, could be an issue for a wide bandwidth PLL design

Use (CppSim) behavioral simulation to evaluate this issue

Other PLL
Noise Sources

Phase noise referred to
VCO carrier frequency

Folded Sigma-Delta
Quant Noise
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What If We Use A Pure Charge Pump Loop Filter?

PD Gain increased by 2 compared to tristate PFD
- Reduced phase error range and max/min current occurs

High linearity despite charge pump current mismatch
- Similar to XOR PD, but noise is reduced
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