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A Modern “Analog” Custom IC

 A 2.5 Gb/s CDR for high 
speed links
- Analog 

amplification and 
phase sensing

- Digital
filtering and calibration

- RF
clocking (2.5 GHz)

 How do we design such 
chips?
- Standard 

methodologies do not 
provide a cohesive 
system approach



IC Design is Getting More Complex

MEMS
RF

Digital

Precision
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 A Programmable 
MEMS Oscillator
- Analog       

Temperature sensor, 
ADC, oscillator 
sustaining circuit

- Digital
signal processing

- RF
clocking (800 MHz)

- MEMS
high Q resonator

 System level design is 
critical
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Circuit Architectures are Changing

 Traditional analog circuits utilize voltage and current

- Modern CMOS processes have issues with voltage 
headroom, intrinsic gain (gmro), and leakage

 Time-based circuits utilize the timing of edges produced 
by “digital” circuits

- Modern CMOS processes are offering faster edge rates 
and lower delay through digital circuits

How do we design such circuits within 
an overall system context?
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Focus:  System Level Design of Time-Based Circuits

 We will begin by taking a closer look at time-based 
circuits
- Background and some recent examples
- Techniques for fast and accurate behavioral simulation

 We will then consider the issue of system level 
simulation
- Where it fits within an overall IC design methodology
- C++ versus Verilog as a system level simulator
- Combined C++/Verilog simulation using 

CppSim/VppSim
 We will conclude with a short case study of a MEMS-

based oscillator
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Phase-Locked Loops are Classical Time-Based Circuits

e(t) v(t) out(t)ref(t) Analog

Loop Filter
Phase

Detect

VCO
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e(t) v(t)

ref(t)

out(t)

e(t) v(t)

de Bellescize
Onde Electr, 1932

 VCO efficiently provides oscillating waveform with 
variable frequency

 PLL synchronizes VCO frequency to input reference 
frequency through feedback
- Key block is phase detector

 Realized as digital gates that create pulsed signals
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Integer-N Frequency Synthesizers

 Use digital counter structure to divide VCO frequency
- Constraint:  must divide by integer values

 Use PLL to synchronize reference and divider output

e(t) v(t) out(t)ref(t) Analog
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Divider

N

Fout = N  Fref

div(t) Sepe and Johnston
US Patent (1968)

Analog output frequency is digitally controlled
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Fractional-N Frequency Synthesizers

 Dither divide value to achieve fractional divide values
- PLL loop filter smooths the resulting variations

Very high frequency resolution is achieved

Wells
US Patent (1984)

Riley
US Patent (1989)

JSSC ‘93

Kingsford-Smith
US Patent (1974)
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Recent Trend:  Move to a More Digital Implementation

 Digital loop filter:  compact area,  digital flow
 Key insight:  faster CMOS processes allow faster edges, 

lower delays, and overall improved time resolution
- Allows us to leverage Moore’s law for improving performance

Staszewski et. al.,
TCAS II, Nov 2003
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Improved TDC and Noise Cancellation Lowers Jitter

 < 250 fs (rms) 
integrated phase noise 
(1kHz to 40 MHz)

 Highly digital 
implementation 

10

Hsu et. al.,
ISSCC 2008
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VCO-Based ADCs Use Time to Achieve High Resolution  

 Peak SNDR of 78 dB with     
20 MHz bandwidth

 Figure of merit:  330 fJ/step
11

Explicit
 DWA

Park et. al.,
ISSCC 2009
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Mult-Phase PWM Enables Efficient RF modulator

Park et. al.,
RFIC 2010

 Meets 802.11g 
spectral mask
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Issues with Behavioral Simulation of Time-Based Circuits

 High output frequency       High sample rate 
 Long time constants          Long time span for transients

Large number of simulation time steps required

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−Δ
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

10-100 kHz

M
M+1

1-10 GHz

 Consider a fractional-N synthesizer as a prototypical 
time-based circuit
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Continuously Varying Edge Times Create Accuracy Issues

 PFD output is not bandlimited
- PFD output must be simulated in discrete-time

 Phase error is inaccurately simulated
 Non-periodic dithering of divider complicates matters

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−Δ
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

M
M+1
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Example:  Classical Constant-Time Step Method

 Directly sample the PFD output according to the 
simulation sample period
- Simple, fast, readily implemented in Matlab, Verilog, C++

 Issue – quantization noise is introduced
- This noise overwhelms the PLL noise sources we are 

trying to simulate

PFD
e(t)ref(t)

e(t)
t

e[n]
n

Sample Period = Ts(Johns and Martin,
Analog Integrated Circuit Design)
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Alternative:  Event Driven Simulation

 Set simulation time samples at PFD edges
- Sample rate can be lowered to edge rate!

PFD
e(t)ref(t)

Sample Period Non-constant

e(t)
t

e[n]
n

Tk Tk+1
(Smedt et al, CICC ’98,
Demir et al, CICC ’94,
Hinz et al, Circuits and Systems ’00)
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Issue:  Non-Constant Time Step Brings Complications

 Filters and noise sources must account for varying time 
step in their code implementations

 Spectra derived from mixing and other operations can 
display false simulation artifacts

 Setting of time step becomes progressively complicated 
if multiple time-based circuits simulated at once

PFD
e(t)ref(t)

Sample Period Non-constant

e(t)
t

e[n]
n

Tk Tk+1
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Is there a better way?
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Proposed Approach: Use Constant Time Step

 Straightforward CT to DT transformation of filter blocks
- Use bilinear transform or impulse invariance methods

 Overall computation framework is fast and simple
- Simulator can be based on Verilog, Matlab, C++ 
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t
Loop Filter

h(t)

v(t)
e(t)
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1

0

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts  h(Tsn)

Ts
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Problem: Quantization Noise at PFD Output

 Edge locations of PFD output are quantized
- Resolution set by time step:  Ts

 Reduction of Ts leads to long simulation times
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Proposed Approach: View as Series of Pulses

 Area of each pulse set by edge locations
 Key observations:

- Pulses look like impulses to loop filter
- Impulses are parameterized by their area and time offset
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Proposed Area Conservation Method

 Set e[n] samples according to pulse areas
- Leads to very accurate results
- Fast computation
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h[n] = Ts  h(Tsn)



23

Double_Interp Protocol

 Protocol sets signal samples to -1 or 1 except for 
transitions
- Transition values between -1 and 1 are directly related to 

the edge time location
- Can be implemented in C++, Verilog, and Matlab/Simulink
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VCO is a Key Block for Double_Interp Encoding

 The VCO block is the key translator from a bandlimited 
analog input to an edge-based waveform
 We can create routines in the VCO that calculate 

the edge times of the output and encode their 
values using the double_interp protocol

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

(Assume VCO output
is a square-wave
for this discussion)
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Calculation of Transition Time Values

 Model VCO based on its phase

v[n]

VCO

out[n]

π

Φvco(t)

t

εk

out[n]

n
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Calculation of Transition Time Values (cont.)

 Determine output transition time according to phase

v[n]

VCO

out[n]

π

Φvco(t)

t

Φ[k]

Φ[k-1]

out(t)

εk

π
out[n]

n
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Calculation of Transition Time Values (cont.)

 Use first order interpolation to determine transition value

v[n]
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out[n]
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Processing of Edges using Double_Interp Protocol

 Frequency divider block simply passes a sub-
sampling of edges based on the VCO output and 
divide value
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Processing of Edges using Double_Interp Protocol

 Phase Detector compares edges times between 
reference and divided output and then outputs pulses 
that preserve the time differences
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Processing of Edges using Double_Interp Protocol

 Charge Pump and Loop filter operation is 
straightforward to model
 Simply filter pulses from phase detector as 

discussed earlier

PFD Charge
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Using the Double_Interp Protocol with Digital Gates

 Relevant timing information contained in the input 
that causes the output to transition
- Determine which input causes the transition, then pass 

its transition value to the output

a[n] n

b[n] n

n

a
b

out

out[n]

D
Q
Q

clk[n] n

out[n] n

n

clk
out

out

out[n]



A Closer Look at System Level Simulation

32
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Consider a Top Down, Mixed-Signal Design Flow
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New Circuit Architectures Require Innovation

System Design

Architecture

Circuit

Verification

Digital

Circuit Design

Analog

Circuit Design

Digital

Circuit

Verification

Analog

System

Verification

Circ. & Arch.

Innovation

Execution

 Key to innovation is 
fast and detailed
simulation of new 
architectures
- Allows evaluation 

of many new ideas
- Pinpoints key 

problem areas
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C++ and Verilog Offer Fast System Level Simulation

System Design

Architecture

Circuit

Verification

Digital

Circuit Design

Analog

Circuit Design

Digital

Circuit

Verification

Analog

System

Verification

Circ. & Arch.

Innovation

Execution

 We will focus on 
using C++ and 
Verilog for Time-
Based Circuis
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Verilog Versus C++ as Behavioral Simulators

 Increasing in popularity 
for digital simulation
- SystemC, SystemVerilog

 Extremely powerful 
language for analog 
modeling
- Class and function 

support allows simple 
path to sophisticated 
modeling

 Faster choice for 
systems that require 
continual update in their 
blocks

C++Verilog
 Popular in the US for 

digital verification

 Fairly limited as a 
language for analog 
modeling
- Relatively time 

consuming to implement 
behavioral models

 Faster choice for 
systems that have sparse 
transition activity



An Approach That Seems to Work Well
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How Do We Make This Approach Efficient?

 Would like to 
incorporate Verilog 
models into C++
- Provides accurate 

models for digital 
processing and 
control

 Would like to 
incorporate C++ 
models into Verilog
- Allows re-use of 

critical block 
models

- Provides C++ for 
complex test 
vector generation
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CppSim and VppSim Offer C++/Verilog Co-Simulation

 CppSim
- C++ is the simulation engine

 Verilog code translated into C++ classes using Verilator
- Best option when system simulation focuses on analog 

performance with digital support
 VppSim

- NCVerilog is the simulation engine
 C++ blocks accessed through the Verilog PLI

- Best option when system simulation focuses on digital 
verification with C++ stimulus

Each of these packages can be downloaded at 
http://www.cppsim.com

and are free for both commercial and academic use
(VppSim requires an NCVerilog license)
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Screenshot of CppSim (Windows Version)

Cadence version is also free (part of VppSim package)
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Screenshot of CppSim/VppSim (Cadence Version)

Interfaces with Matlab, 
GTKWave, and SimVision
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A Closer Look at CppSim/VppSim Methodology

 Schematic
- Provides 

hierarchical 
description of 
system 
topology

 Code blocks
- Specify 

module
behavior
using 
templated C++ 
code or 
Verilog code

 Designers graphically develop system based on a 
library of C++/Verilog symbols and code
- Easy to create new symbols  with accompanying code

PFD
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Pump

Σ−Δ

Modulator

Loop
Filter

Divider

CppSim Module

Description

Name

Inputs, Outputs

Parameters

Code

CppSim Module

Description

Name

Inputs, Outputs

Parameters

Code

1 D Q
R

1 D Q

R

Verilog Module

Description
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1

2
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Module 1

C++ Class for
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C++ Class for
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C++ Class for
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C++ Class for

Module 4

C++ Class for

Module 5

C++ Class for

Module 6

CppSim Module

Description

Name

Inputs, Outputs

Parameters

Code

CppSim Module

Description

Name

Inputs, Outputs

Parameters

Code

Verilog Module

Description

1
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CppSim Automates C++ Class Generation

 Modules are identified from schematic and then
- CppSim modules are converted into C++ classes 
- Verilog modules are translated into C++ classes using Verilator
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CppSim Assembles C++ Classes into Overall Sim Code

1

1
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Module 2
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Module 5
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C++ Class for Top Module

 Block-by-block 
execution of each 
module at each 
time step

 Hierarchical 
description is 
retained
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C++ Class for

Module 1

C++ Class for

Module 2

C++ Class for

Submodule 1

C++ Class for

Module 3

C++ Class for

Submodule 2

C++ Class for
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C++ Class for
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C++ Class for Top Module

Call C++ Top Module

Loop

Record Probed Signal Values

CppSim Code

If (Final Simulation Sample)
Break

Fast C++ Simulation

Call C++ Top Module

(for one time step)

PLI Header Code

PLI to C++ Signal Conversion

Verilog PLI Code

Seamless Verilog Support

C++ to PLI Signal Conversion

Call C++ Top Module

(for many time steps)

Mex Header Code

Mex to C++ Signal Conversion

Matlab Mex Code

Seamless Matlab Support

C++ to Mex Signal Conversion

C++ Code Is Easily Embedded In Other Simulators

 CppSim provides automatic Matlab mex file generation
 VppSim embeds C++ into NCVerilog simulator
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VppSim Example: Embed CppSim Module in NCVerilog

module: leadlagfilter
parameters: double fz, double fp, 

double gain
inputs: double in
outputs:  double out
static_variables:
classes: Filter filt("1+1/(2*pi*fz)s",

"C3*s + C3/(2*pi*fp)*s^2",
"C3,fz,fp,Ts",1/gain,fz,fp,Ts);

init: 
code:
filt.inp(in);
out = filt.out;

////// Auto-generated from CppSim module //////
module leadlagfilter(in, out);

parameter fz = 0.00000000e+00;
parameter fp = 0.00000000e+00;
parameter gain = 0.00000000e+00;
input in;
output out;

wreal in;
real in_rv;
wreal out;
real out_rv;

assign out = out_rv;

initial begin
assign in_rv = in;

end

always begin
#1
$leadlagfilter_cpp(in_rv,out_rv,fz,fp,gain);

end
endmodule

CppSim module Resulting Verilog module
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VppSim Example:  Using Busses in CppSim Module

module: queue2
parameters: int bit_width
inputs: double_interp clk,

double rst_n,
bool in[2047:0],
int enqueue,
bool dequeue[31:0]

outputs: bool out[2047:0],
bool not_empty[31:0],
int not_full

/////////// Auto-generated from CppSim module ///////////
module queue2(clk, rst_n, in, enqueue, 

dequeue, out, not_empty, 
not_full);

parameter bit_width = 0;
input clk;
input rst_n;
input [2047:0] in;
input [31:0] enqueue;
input [31:0] dequeue;
output [2047:0] out;
output [31:0] not_empty;
output [31:0] not_full;

wreal clk;
real clk_rv;
wreal rst_n;
real rst_n_rv;

CppSim module Resulting Verilog module



Many Tutorials Available for CppSim/VppSim

 Wideband Digital fractional-N frequency synthesizer
 VCO-based Analog-to-Digital Convertor
 GMSK modulator
 Decision Feedback Equalization
 Optical-Electrical Downversion and Digitization
 OFDM Transceiver
 C++/Verilog Co-Simulation

48

See http://www.cppsim.com
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Case Study: MEMS-based Programmable Oscillators

 A part for each frequency 
and non-plastic packaging
- Non-typical frequencies 

require long lead times

 Same part for all frequencies 
and plastic packaging
- Pick any frequency you want 

without extra lead time

Quartz Oscillators MEMS-based Oscillator

Key benefit:  high volumes at low cost using IC fabrication

source: www.ecliptek.com
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Architecture of MEMS-Based Programmable Oscillator

 MEMS device provides high Q resonance at 5 MHz
- CMOS circuits provide DC bias and sustaining amplifier

 Fractional-N synthesizer multiplies 5 MHz MEMS 
reference to a programmable range of 750 to 900 MHz

 Programmable frequency divider enables 1 to 115 MHz 
output

Fractional-N

Synthesizer

Oscillator Sustaining

Circuit and

Charge Pump Continuously

Programmable

MEMS

Resonator

5 MHz

Digital
Frequency Setting

750-900 MHz

Programmable

Frequency

Divider

1 to 115 MHz
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Compensation of Temperature Variation

 High resolution control of fractional-N synthesizer allows 
simple method of compensating for MEMS frequency 
variation with temperature
- Simply add temperature sensor and digital compensation logic

Fractional-N

Synthesizer

Oscillator Sustaining

Circuit and

Charge Pump

Temp

Freq Error (ppm)

Digital

Logic

Temperature

Sensor

Temp

Freq Compensation (ppm)

Temp

Freq Error (ppm)

MEMS

Resonator

5 MHz

Digital
Frequency Setting

750-900 MHz

Programmable

Frequency

Divider Continuously

Programmable

1 to 115 MHz



52

Achieving Fast and Accurate System Level Simulation

Fractional-N

Synthesizer

Oscillator Sustaining

Circuit and

Charge Pump

Temp

Freq Error (ppm)

Digital

Logic

Temperature

Sensor

Temp

Freq Compensation (ppm)

Temp

Freq Error (ppm)

MEMS

Resonator

5 MHz

Digital
Frequency Setting

750-900 MHz

Programmable

Frequency

Divider Continuously

Programmable

1 to 115 MHz

 System level simulation involves several types of circuits
 Fractional-N synthesizer and MEMS oscilllator are time-based
 Temperature sensor is traditional analog
 Many digital blocks interact with the above
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Measured Results Confirm CppSim/VppSim Flow
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 Measured phase 
noise closely 
matches simulations

 Measured frequency 
stability is similar to 
many quartz parts



Benchmark of Simulators on Entire IC

 Detailed architectural model using CppSim
- Allows examination of noise and analog dynamics
- Execution time:  2.8 milliseconds/hour

 Detailed verification model using VppSim
- Allows validation of digital functionality in the context of 

analog control and hybrid digital/analog systems
- Execution time:  7 milliseconds/minute

 Spice-level model
- Allows checking of floating gate, over-voltage 

conditions, startup of bandgap and regulators, etc.
- Execution time:

 Spectre Turbo:  2 microseconds/day
 BDA:  8 microseconds/day

54

Tabulated simulation times for our next generation
MEMS oscillator:



Conclusions

 Time-based circuits are becoming more mainstream 
due their advantages in advanced CMOS processes
- Digital phase-locked loops
- VCO-based Analog-to-Digital Conversion
- RF transmitters leveraging pulse width modulation

 Fast and accurate system level simulation of such 
circuits can be achieved with the “double_interp” 
protocol

 CppSim and VppSim provide a simple and free 
approach to achieving C++/Verilog Co-Simulation
- CppSim is useful for primarily analog focus
- VppSim is useful for primarily digital focus
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