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What is a Phase-Locked Loop (PLL)?
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Onde Electr, 1932

 VCO efficiently provides oscillating waveform with 
variable frequency

 PLL synchronizes VCO frequency to input reference 
frequency through feedback
- Key block is phase detector

 Realized as digital gates that create pulsed signals
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Integer-N Frequency Synthesizers

 Use digital counter structure to divide VCO frequency
- Constraint:  must divide by integer values

 Use PLL to synchronize reference and divider output
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Fractional-N Frequency Synthesizers

 Dither divide value to achieve fractional divide values
- PLL loop filter smooths the resulting variations

Very high frequency resolution is achieved
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Σ−Δ Quantization Noise

The Issue of Quantization Noise

 Limits PLL bandwidth
 Increases linearity requirements of 

phase detector
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Analog Phase Detection

 Phase detector varies pulse width with phase error
 Loop filter smooths pulses to extract average value
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Issues with Analog Loop Filter

 Charge pump:  output resistance, mismatch, noise, leakage
- Analog design requires significant effort, hard to port

 RC Network:  large area
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Should We Go All Digital ?

 Digital loop filter:  compact area,  digital flow
 Issue:  difficult to achieve low area and power in older 

processes such as 0.18u CMOS
- May not be worth the effort unless advanced CMOS available

Staszewski et. al.,
TCAS II, Nov 2003
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Can We Achieve an Analog PLL with Lower Design 
Complexity and Adequate Performance?
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Outline

 Background information on traditional analog PLL 
implementations and analysis

 Moving away from the traditional approach
- XOR-based phase detection
- Switched resistor loop filter
- Switched capacitor frequency detection

 MEMS oscillator example
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Phase Detector Signals
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Key Characteristics of a Phase Detector

 Adequate phase detection range
- Fractional-N PLLs need more range than Integer-N PLLs

 Linearity across operating range of phase detector
- Fractional-N PLLs have issues with noise folding
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XOR Phase Detector

 Creates pulse widths 
that vary according to 
the phase difference 
between reference and 
divider output signals

 Simple implementation
 Divide-by-2 is used to 

eliminate impact of 
falling edges
- Duty cycle of Ref(t) and 

Div(t) signals is no 
longer of concern
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Modeling of XOR Phase Detector

 Average value of pulses is extracted by loop filter
- Look at detector output over one cycle:

 Equation:

Notice that the average error is a linear function
of the pulse width W regardless of mismatch

T

W

1

-1

e(t)
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Overall XOR Phase Detector Characteristic
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 Assume phase difference is confined to same slope region
- XOR PD model becomes a highly linear gain element

 Corresponding frequency-domain model

Modeling of XOR Phase Detector
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Overall PLL Model with XOR Phase Detector

 Define A(f) as open loop response

 Define G(f) as a parameterizing closed loop function

- Where Kpd is defined as PD gain (1/ for XOR PD)
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Key Properties of G(f) Function

 G(f) always has a DC gain of 1
- True since A(f) goes to infinity as f goes to 0

 G(f) is lowpass in nature
- True since A(f) goes to 0 as f goes to infinity

 G(f) has bandwidth close to unity gain frequency of A(f)
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Closed Loop Response From Ref to PLL Output

Lowpass with DC gain of N
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Closed Loop Response From PD to PLL Output

Lowpass with DC gain of N/Kpd
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Closed Loop Response From VCO to PLL Output

Highpass with high frequency gain of 1
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Consider A First Order Loop Filter

 First order loop filter
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Closed Loop Poles Versus Open Loop Gain

 Higher open loop gain leads to an increase in bandwidth 
but decrease in phase margin
- Closed loop poles start exhibiting higher Q
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Corresponding Closed Loop Response

 Decrease in phase margin leads to
- Peaking in closed loop frequency response
- Ringing in closed loop step response
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Design of PLL dynamics is similar to
opamps and other classical feedback systems



24

The Problem with a First Order Loop Filter

 To achieve good phase margin, fp >> unity gain frequency
- Implies that H(f) ≈ 1 at unity gain frequency
- Bandwidth of G(f) purely set by Kpd, Kv, and N

 Recall that bandwidth of G(f) 
is roughly the same as unity 
gain frequency of A(f)

-90o

-180o

-120o

-150o

20log|A(f)|

f

angle(A(f))

Open loop
gain

increased

0 dB

fp

Unity Gain
Frequency

Limited freedom to choose desired closed loop bandwidth



25

Inclusion of a Charge Pump

 Charge pump current adds a new parameter that allows 
more freedom in choosing the PLL bandwidth

 Lead/lag filter is a common loop filter with charge pump
- Current into a capacitor forms integrator
- Add extra pole/zero using resistor and additional capacitor
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Forms a Type II PLL
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Type I versus Type II PLL Implementations

 Type I: one integrator in PLL open loop transfer 
function A(f)
- VCO adds one integrator
- Loop filter, H(f), has no integrators

 Type II:  two integrators in PLL open loop transfer 
function A(f)
- Loop filter, H(f), has one integrator
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 DC output range of gain block versus integrator

 Issue:  often need to provide attenuation through loop 
filter to achieve a desired closed loop bandwidth
- Loop filter output fails to cover full input range of VCO

VCO Input Range Issue for Type I PLL Implementations
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Options for Achieving Full Range Span of VCO
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 Type I
- Add a D/A converter to provide coarse tuning

 Adds power and complexity
 Steady-state phase error inconsistently set

 Type II
- Integrator automatically provides DC level shifting

 Low power and simple implementation
 Steady-state phase error always set to zero
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Design of Type II, Charge Pump PLL

 Place fz and fp based on phase margin, and open loop gain 
based on desired PLL bandwidth
- Charge pump offers high flexibility in choosing PLL bandwidth

Non-dominant
pole

Dominant
pole pair

Open loop
gain

increased

120o

-180o

-140o

-160o

20log|A(f)|

f
fz

0 dB

PM = 55o for C
PM = 53o for A
PM = 54o for B

angle(A(f))

A

A

A

A

B

B

B

B

C

C

C

C

Evaluation of
Phase Margin

Closed Loop Pole
Locations of G(f)

fp

Re{s}

Im{s}

0



30

Negative Issues For Type II PLL Implementations

 Parasitic pole/zero pair causes
- Peaking in the closed loop frequency response

 Increases PLL phase noise
- Extended settling time due to parasitic “tail” response

 Bad for applications demanding fast settling time
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The Need for Frequency Detection



32

Response of PLL to Divide Value Changes

 Change output frequency by changing the divide value
 Classical approach provides no direct model of impact of 

divide value variations
- Treat divide value variation as a perturbation to a linear system 

and use the PLL closed loop response
 More advanced PLL models include divide value variations

- M.H. Perrott, M.D. Trott, C.G. Sodini, "A modeling approach for Σ-∆ 
fractional-N frequency synthesizers allowing straightforward noise 
analysis,“ JSSC, vol. 37, pp. 1028-1038, Aug. 2002.

N

Φref(t) Φout(t)

Φdiv(t)

e(t) v(t)
H(f)

jf

1
π

1

Loop Filter
XOR PD

VCO

Divider

N
N+1

t

Kv



33

Response of an Actual PLL to Divide Value Change

 Example:  Change divide value by one
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 PLL responds according to linear model of closed loop response!
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What Happens with Large Divide Value Variations?

 PLL response does not fit linear model

- What is happening here?
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Recall Phase Detector Characteristic

 To simplify modeling, we assumed that we always 
operated in a confined phase range (0 to 2)
- Led to a simple PD model

 Large perturbations knock us out of that confined 
phase range
- PD behavior varies depending on the phase range it 

happens to be in
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Cycle Slipping

 Consider the case where there is a frequency offset 
between divider output and reference
- We know that phase difference will accumulate

 Resulting ramp in phase causes PD characteristic to 
be swept across its different regions (cycle slipping)

ref(t)

div(t)

Φref(t) - Φdiv(t)
2ππ-π-2π 0

avg{e(t)}

1

-1

gain = 1/πgain = -1/π



37

Impact of Cycle Slipping

 Loop filter averages out phase detector output
 Severe cycle slipping causes phase detector to 

alternate between regions very quickly
- Average value of XOR characteristic can be close to 

zero
- PLL frequency oscillates according to cycle slipping
- In severe cases, PLL will not re-lock

 PLL has finite frequency lock-in range!
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Back to PLL Response Shown Previously

 PLL output frequency indeed oscillates
- Eventually locks when frequency difference is small enough

- How do we extend the frequency lock-in range?
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Phase Frequency Detectors (PFD)
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 Example:  Tristate PFD



40

Tristate PFD Characteristic

 Calculate using similar approach as used for XOR 
phase detector

 Note that phase error characteristic is asymmetric 
about zero phase
- Key attribute for enabling frequency detection
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PFD Enables PLL to Always Regain Frequency Lock

 Asymmetric phase error characteristic allows positive 
frequency differences to be distinguished from 
negative frequency differences 
- Average value is now positive or negative according to 

sign of frequency offset
- PLL will always relock for type II PLL
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The Issue of Noise

 Each PLL component contributes noise that impacts 
overall PLL output phase noise

 Achievement of adequately low PLL phase noise is a 
key issue when designing a PLL
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Modeling the Impact of Noise on Output Phase of PLL

 Determine impact on output phase by deriving 
transfer function from each noise source to PLL 
output phase
- There are a lot of transfer functions to keep track of!
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Simplified Noise Model

 Refer all non-VCO PLL noise sources to the PFD output
- PFD-referred noise corresponds to the sum of these noise 

sources referred to the PFD output
- Typically, charge pump noise dominates PFD-referred noise
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Leverage Previous Transfer Function Analysis
VCO-referred
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 PFD-referred noise
- Lowpass with DC gain of N/Kpd

 VCO-referred noise
- Highpass with gain of 1
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Transfer Function View of PLL Phase Noise

 PFD-referred noise dominates at low frequencies
- Corresponds to close-in phase noise of synthesizer

 VCO-referred noise dominates at high frequencies
- Corresponds to far-away phase noise of synthesizer
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Spectral Density of PLL Phase Noise Components
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 PFD-referred noise:  VCO-referred noise:

 Overall:
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Take a Closer Look at Charge Pump Noise

 Spectral density of charge pump noise is a function of 
device noise and pulse width
- Short pulse widths reduce effective charge pump noise

Tristate PFD has an advantage of allowing short pulse
widths (i.e., lower noise) during steady-state operation
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Impact of Transistor Current Magnitude on Noise

 Charge pump noise will be related to the current it 
creates as

 Recall that gdo is the channel resistance at zero Vds- At a fixed current density, we have

- Therefore, charge pump noise is proportional to Icp
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Analysis of Charge Pump Noise Impact 

 Transfer function from charge pump noise to PLL output 
is found by referring noise to PFD output by factor 1/Icp
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Increasing Icp Leads to Reduced Noise at PLL Output

 Output phase noise due to charge pump:
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Issue:  Increasing Icp Leads to Larger Loop Filter

Area gets larger since increasing Icp leads to
increased loop filter capacitance (C1+C2)
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 To keep PLL BW unchanged, assume Icp/(C1+C2) is held 
constant (to maintain open loop gain)
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Better Approach:  Increase PD Gain to Lower Noise

 To keep PLL BW unchanged, assume IcpKpd held constant
- Loop filter can remain unchanged as Kpd is increased
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Impedance
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PFD-Referred
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Can We Increase PD Gain for a Charge Pump PLL?

 XOR-based PD provides factor of two higher gain than a 
tristate PFD
- Key issue: carries an overall noise penalty since the charge 

pump is never gated off (i.e., generates long pulses)
- XOR PD rarely used due to its noise penalty
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en(t)Φjit[k] Φvn(t)Icpn(t)

Icp

VCO Noise

f
0

SIcpn
(f)

Charge Pump
Noise

f
0

SΦvn
(f)

-20 dB/dec

PFD
Charge
Pump

Loop Filter
Impedance
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Key Issue of Tristate PFD:  Charge Pump Mismatch

 Mismatch of charge pump Up/Down currents leads to 
nonlinearity in the PLL phase comparison path when 
tristate PFD used

Reg
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Ref(t)
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Nonlinearity Causes Noise Folding with Frac-N PLLs

 Significant analog design effort is often required to avoid this issue
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Summary of Charge Pump PLL Issues

 Tristate PFD has issues with
- Low PD gain – leads to increased loop filter for given PLL noise
- Charge pump nonlinearity – causes quantization noise folding

 Charge Pump has issues with
- Nontrivial analog design effort for wide range, high output 

impedance, low leakage, reasonable matching, low noise

Reg

D Q
div(t)

D Q

reset

1

1

ref(t)

up(t)

C1
down(t)

R1

C2

vtune(t)

Divider

Are there alternative analog PLL architectures?
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How Do We Achieve Higher PD Gain?

 Use tristate PD as our starting point
- Range of detector spans 2 Reference periods (i.e., 4 radians)
- PD gain is 2/(PD range) = 2/(4) = 1/(2)

Reg
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reset
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Sampled PD Achieves Much Higher PD Gain

 Directly sample VCO signal at reference edges
- PD gain becomes 2/(/N) = 2N/assuming

 N = VCO Frequency)/(Ref Frequency)
 PD output voltage range assumed to be -1 to 1

Gao, Klumperink, Bohsali, Nauta, JSSC, Dec 2009

Yields much lower in-band PLL noise, but constrained
to integer-N PLL structures

C1

Vtune(t) Out(t)

Sampling PD
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Remaining
Loop Filter

Ref(t)

PD Range = π/N

1

-1

C2



60

Div(t)
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Up(t)

Down(t)
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C1 Vc1(t)
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Div_4x(t)
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8

Achieving Higher PD Gain for a Fractional-N PLL

 Develop a PD with reduced phase error range in which 
Up/Down pulses vary in width in opposite directions
- Need an appropriate loop filter topology that properly leverages 

the reduced PD range for higher PD gain
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Div(t)
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Key Implementation Detail:  Use Switched Resistor

 Switching to voltage Supply/Gnd causes Vc1(t) to reflect the 
average of the Up/Down pulses within the reduced PD range
- PD gain is increased since full voltage range at Vc1 achieved 

across a reduced phase error range

See also:  
Hedayati, Bakkaloglu

RFIC 2009
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D Q
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8

Implementation of High Gain Phase Detector

 Use 4X higher divider frequency
- Simple digital implementation
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Multi-Phase Pulse Generation (We’ll Use it Later…)
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Div(t)
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What If We Use A Charge Pump with the High Gain PD?

 PD Gain increased by 2 compared to tristate PFD
- Reduced phase error range and max/min current occurs

 High linearity despite charge pump current mismatch
- Similar to XOR PD, but noise is reduced
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Increasing Feedforward Gain While Utilizing Charge Pump

Can we remove the charge pump to reduce
the analog design effort?

 We can use the high gain PD in 
a dual-path loop filter topology
- But we want a simple design!

See also: 
Craninckx, 
JSSC, Dec 

1998

High

Gain

PD

Ref(t)

Div_4x(t)

w

H(w)C2

Vtune(t)

(High Kv)

Vdd

Gnd

Up(t)

R1

C1

Down(t)

Ipump

Ipump

Vtune(t)

(Low Kv) ref(t)

div(t)

2

8

PD
Gain

2

2

PD
Gain

2

Vdd

Supply
Gain

Charge
Pump

Ipump

1+sR1_effC1

1

sC2

1

RC
Network

Integration
Cap

wz



66

Passive RC Network Offers a Simpler Implementation

 Capacitive feedforward path 
provides stabilizing zero

 Design effort is simply choosing 
switch sizes and RC values 
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The Issue of Reference Spurs

 Ripple from Up/Down 
pulses passes through 
to VCO tuning input

Is there an easy way to
reduce reference spurs?
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Leverage Multi-Phase Pulsing

 Ripple from Up/Down pulses 
blocked before reaching VCO
- Reference spurs reduced!
- Similar to sample-and-hold 

technique (such as Zhang et. 
al., JSSC, 2003)

There is a nice side benefit
to pulsing resistors…
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Pulsing Resistor Multiplies Resistance!

 Resistor only passes current when pulsed on
- Average current through resistance is reduced according 

to ratio of On time, Ton, versus pulsing Period, Tperiod- Effective resistance is actual resistance multiplied by ratio 
Tperiod/Ton

Resistor multiplication allows a large RC time constant
to be implemented with smaller area

Pulse_On(t)

Ton

Tperiod

R/2R/2 Ton

Tperiod
RR_eff  =

J. A. Kaehler, JSSC, Aug. 1969
and 

P. Kurahashi, P. K. Hanumolu, 
G. C. Temes, and U.-K. Moon, 

JSSC, Aug. 2007
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Parasitic Capacitance Reduces Effective Resistance

Spice simulation and measured results reveal that
>10X resistor multiplication can easily be achieved

 Parasitic capacitance stores charge during the pulse 
“On” time
- Leads to non-zero current through resistor during pulse 

Off time
- Effective resistance reduced

Ton

Tperiod

Pulse_On(t)

CpCp Cp CpCpCp

R/4R/4 R/4 R/4 Ton

Tperiod
R<R_eff
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Multi-Modulus Divider Allows Short Pulse Generation

 Creates well controlled pulse widths corresponding to 
multiples of the period of its high speed input
- Standard circuit used in many fractional-N PLL structures
- Pulse width can be changed by tapping off different stages

Divide-By-2/3 Stage
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Divide-By-2/3 Stage Divide-By-2/3 Stage
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DQDQ

D Q D Q
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Latch Latch

clk

modin

modoutcon
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D Q
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Div_4x(t)

Up(t)

Down(t)

Mid(t)
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Tdiv
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Short Pulse
Generator

Utilize Short Pulses from Divider in the High Gain PD

 Short pulses from divider 
output are used to clock 
the PD registers

 PD state is used to gate 
divider output every 4 
cycles to form Last pulse
- Lower pulse frequencies 

can also be implemented
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Regulated Vdd
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Switched Resistor Achieves PLL Zero with Low Area

 For robust stability, PLL zero 
should be set << PLL BW
- Example:  PLL BW = 30kHz
- Assume desired wz = 4 kHz
- Set Cf = 2.5pF (for low area)
- Required R3_eff = 16 MegaOhms

 Large area

Example:  Proper choice of Ton and Tperiod allows 
R3_eff = 16 MegaOhms to be achieved with R3 = 500 kOhms!
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Overall Design of Loop Filter

 Apply standard transfer function analysis to achieve desired PLL 
bandwidth and phase margin

1

fz fp2 fp3fp1

H(f)

f

Cf

Cf + C3

Overall PLL Unity Gain
Crossover Region

R1_eff R2_eff

R3_eff

C1 C2 C3
Cf

1 + s/wz

(1 + s/wp1)

Φref(t)

Φdiv(t)

(1 + s/wp2)(1 + s/wp3)

H(s)

2π Kv

s

VCO

1

Nnom

α

2π

Vdd

2

PD
Gain

Supply
Gain

Φout(t)Vtune(t)Vlf(t)

Vtune(t)Vlf(t)

Examples:  (assume C1 = C2)

β2=2.62β1=0.38,
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Noise Analysis (Ignore Parasitic Capacitance of Resistors)

 Assumption:  switched resistor time constants are 
much longer than “on time” of switches
- Single-sided voltage noise contributed by each resistor 

is simply modeled as 4kTReff (same as for a resistor of 
the equivalent value)

 Note: if switched resistor time constants are shorter 
than “on time” of switches
- Resistors contribute kT/C noise instead of 4kTReff- We would not want to operate switched resistor filter in 

this domain since time constants would not be boosted 

Φref(t) R1_eff R2_eff

R3_eff

C1 C2 C3
Cf

Vtune

Φdiv(t)

8

2π
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2

PD
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Issue:  Nonlinearity in Switched Resistor Loop Filter

 Nonlinearity is caused by
- Exponential response of 

RC filter to pulse width 
modulation

- Variation of Thold due to 
Sigma-Delta dithering of 
divide value

 Note:  to avoid additional 
nonlinearity, design divide 
value control logic to keep 
Ton  a constant value
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Nonlinearity Due to Pulse Width Modulation

 Pulse width modulation 
nonlinearity is reduced as 
ratio T/(R1C1) is reduced
- If T/(R1C1) is small:

- This implies nonlinearity 
is reduced with lower 
PLL bandwidth
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Key Design Issue:  Folded Noise versus Other Noise

 Folded quantization noise due to nonlinearity is reasonably 
below other noise sources for this example
- However, could be an issue for wide bandwidth PLLs

 Use (CppSim) behavioral simulation to evaluate this issue

Other PLL
Noise Sources

Phase noise referred to
VCO carrier frequency

Folded Sigma-Delta
Quant Noise
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The Issue of Initial Frequency Acquisition

 During initial frequency acquisition, Vtune(t) must be 
charged to proper bias point
- Following through on previous example:

 Large 16 MegaOhm resistance of R3_eff prevents fast 
settling of the voltage across C3
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Down(t)

R1

C1 C2
Cf
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R2/2 R2/2

Cf
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R3_eff = 16MegaOhms
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Capacitive Divider Sets Instantaneous Voltage Range

Φref-Φdiv

avg{Vc1(t)}
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2

α

How do we quickly charge capacitor C3 to its correct
DC operating point during initial frequency acquisition?
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Utilize Switched Capacitor Charging Technique

 Charge C3 high or low only when frequency error is detected
- No steady-state noise penalty, minimal power consumption
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CppSim Behavioral Simulation of Frequency Locking

Switched capacitor technique allows relatively
fast frequency locking
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PLL Application: A MEMS-based Programmable Oscillator

 A part for each frequency 
and non-plastic packaging
- Non-typical frequencies 

require long lead times

 Same part for all frequencies 
and plastic packaging
- Pick any frequency you want 

without extra lead time

Quartz Oscillators MEMS-based Oscillator

We can achieve high volumes at low cost using IC fabrication

source: www.ecliptek.com
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Architecture of MEMS-Based Programmable Oscillator

 MEMS device provides high Q resonance at 5 MHz
- CMOS circuits provide DC bias and sustaining amplifier

 Fractional-N synthesizer multiplies 5 MHz MEMS 
reference to a programmable range of 750 to 900 MHz

 Programmable frequency divider enables 1 to 115 MHz 
output
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Circuit and

Charge Pump Continuously
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5 MHz

Digital
Frequency Setting

750-900 MHz

Programmable
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1 to 115 MHz
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Compensation of Temperature Variation

 High resolution control of fractional-N synthesizer allows 
simple method of compensating for MEMS frequency 
variation with temperature
- Simply add temperature sensor and digital compensation logic
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Why Use An Alternative Fractional-N PLL Structure?

Want to achieve low area, low power, and low design complexity

Fractional-N

Synthesizer

Oscillator Sustaining

Circuit and

Charge Pump

Temp

Freq Error (ppm)
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1 to 115 MHz

Switched resistor PLL provides a nice solution
for this application space
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CMOS and MEMS Die Photos Show Low Area of PLL

 Active area:
- VCO & buffer & 

bias: 0.25mm2

- PLL (PFD, Loop 
Filter, divider):      
0.09 mm2

- Output divider: 
0.02 mm2

 External supply
- 1.8/3.3V

 Current (20 MHz 
output, no load)
- ALL:  3.2/3.7mA
- VCO: 1.3mA
- PLL & Output 

Divider: 0.7mA
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Measured Phase Noise (100 MHz output)

 Suitable for most serial applications, embedded systems and 
FPGAs, audio, USB 1.1 and 2.0, cameras, TVs, etc. 

Integrated Phase Noise:
17 ps (rms) from 1 kHz to 40 MHz

Ref. Spur:  -65 dBc

-90 dBc/Hz

100 Hz 40 MHz30 kHz

-140 dBc/Hz
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Calculated Phase Noise Profile of Overall PLL

 Note that loop filter noise is well below other PLL noise sources
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Simulated Impact of Switched Resistor Nonlinearity

 Noise folding below other PLL noise sources
- More significant for third order Sigma-Delta

-150

-140

-130

-120

-110

-100

-90

Simulated Phase Noise Impact of S-D Noise Folding (100 MHz carrier)

1k 10k 100k 1M

Frequency Offset from Carrier (Hz)

3M

2nd order S-D

3rd order S-D

Overall Phase Noise

P
h

a
s

e
 N

o
is

e
 (

d
B

c
/H

z
)

ideal

simulated

ideal

simulated



91

-50 0 50 100
-50

-40

-30

-20

-10

0

10

20

30

40

50

Temperature (degC)

F
re

q
u

e
n

c
y
 V

a
ri

a
ti

o
n

 
(P

P
M

)

Frequency Variation After Single-Temperature Calibration 

< +/-30 ppm across industrial temperature range
with single-temperature calibration

6600 Parts



92

Conclusion

 We took a closer look at the classical charge pump PLL
- Very versatile structure
- Requires a fair amount of analog design effort

 Alternative PLL structures can provide low area, low 
power, and reduced analog design effort
- High gain phase detector lowers impact of loop filter noise
- Switched resistor technique eliminates the charge pump 

and reduces area through resistor multiplication
- Switched capacitor frequency detection enables reasonable 

frequency acquisition time with no noise penalty

Application specific PLL structures can provide
worthwhile benefits over a classical analog PLL structure


