

 1

CppSim/VppSim Primer
Version 5.3

Michael H. Perrott

http://www.cppsim.com

May 24, 2014

Copyright © 2004-2014 by Michael H. Perrott
All rights reserved.

Table of Contents

Introduction ... 2
Installation and Setup .. 4

A. Windows ... 4
B. Mac OS X ... 4
C. Linux ... 4

Known Bugs .. 5
The Basics of Running CppSim Simulations .. 6

A. Running a CppSim Simulation in Sue2 .. 6
B. Editing CppSim Module Descriptions .. 10
C. Editing Simulation Files (i.e., test.par files) ... 12

CppSim versus VppSim for Simulation of Verilog Modules ... 13
A. Running a CppSim Simulation with a Verilog Module ... 13
B. Utilizing GTKWave to view CppSim Simulations .. 19
C. Running a VppSim Simulation with a Verilog Module ... 27
D. Key Distinguishing Features between CppSim and VppSim ... 32

The Basics of Including Electrical Elements in CppSim/VppSim Simulations 34
A. Including Electrical Elements within System Descriptions ... 34
B. Key Constraints When Using Electrical Elements ... 36

Using The CppSim Library Manager .. 40
A. Basic Operations ... 40

sue.lib Operations .. 42
Library Operations and Module Operations .. 43

B. Exporting CppSim Libraries ... 43
C. Importing CppSim Libraries Generated from the Export Library Tool 44
D. Importing CppSim (Version 2) Libraries ... 47

Creating Matlab Mex Functions and Simulink S-Functions ... 48
A. Matlab Mex Function Generation .. 48
B. Simulink S-Function Generation .. 50

Using Python with CppSim ... 53
Using Matlab with CppSim ... 59

A. Running CppSim Simulations in Matlab .. 59
B. Creating Matlab Mex Functions ... 60
C. Creating Simulink S-Functions .. 61

 2

Killing Runaway CppSim Simulations ... 61
More Details on CppSimView .. 63

A. Preliminary Setup ... 63
B. Selecting an Output File ... 64
C. Basic Plotting and Zooming Methods .. 65
D. Advanced Plotting Methods ... 67
E. Saving Plots to EPS files, FIG files, or the Windows Clipboard .. 68
F. Choosing Different Plotting Functions ... 68
G. Using the plot_pll_phasenoise(…) Plotting Function .. 69
H. Using the plot_pll_jitter(…) Plotting Function .. 70

More Details on Sue2 .. 73
A. Using Navigation and Edit Commands .. 74
B. Creating a New Schematic ... 74
C. Creating an Icon View (And Associated Parameters) For A Given Schematic 81

Creating and Running New CppSim Simulations ... 83
A. Creating a New Simulation File for a Newly Created Schematic .. 83
B. Using the eyesig(…) Plotting Function .. 85
C. Using the alter: Statement ... 86

Creating New CppSim Primitives ... 87
A. Creating a Schematic View for the Primitive ... 87
B. Creating an Icon View for the Primitive .. 88
C. Instantiating the Primitive Within a Different Schematic .. 88
D. Running CppSim with the Primitive .. 90
E. Creating Code for the Primitive .. 92
F. Running CppSim with the Primitive (Part II) ... 93

Conclusion ... 96

Introduction

CppSim is a general behavioral simulator that leverages the C++ language to achieve very fast
simulation times, and a graphical framework to allow ease of design entry and modification. Users
may freely use this package for either educational or industrial purposes without restriction. However,
the package and all of its components come with no warranty or support.

To install this package, first download it from the web at http://www.cppsim.com/download. Upon
extraction, several sub-packages will be installed to perform the various tasks required:

1) Sue2: a free, open source, schematic capture program that is easy to use.
 Note: in Linux version, this program as run as command sue2

2) CppSimView: a free waveform viewer for plotting signals produced by CppSim and VppSim.
 Note: in Linux version, this program as run as command cppsimview

3) CppSim Classes: free, open source, C++ classes to allow easy implementation of common
system blocks such as filters, noise generators, and PLL/DLL blocks that leverage the
techniques described in “Fast and Accurate Behavioral Simulation of Fractional-N
Synthesizers and other PLL/DLL Circuits”, M.H. Perrott, DAC, 2002.

4) net2code function: free (but not open source) executable routine that plays a central role of
CppSim and VppSim as it produces C++ and/or Verilog simulation code from a netlist and
module descriptions.

 3

5) Hspice Toolbox for Matlab/Octave: a free, open source set of Matlab/Octave routines to
allow straightforward access to Hspice, Ngspice, and CppSim simulation results within Matlab
or Octave.

6) CppSim and Ngspice Data Modules for Python: a free, open source set of Python classes
and routines to allow straightforward access to CppSim and Ngspice simulation results within
Python.

7) MinGW C++ compiler: (Windows only) a free GNU-based C++ compiler used by CppSim
to automatically compile the simulation code it produces.

8) MSYS: (Windows only) a free set of routines that allow use of the “make” facility to compile
C++ code.

9) Emacs: (Windows and Mac OS X only) a free, open source, text editor that is especially
convenient for writing C++ code.

10) PLL Design Assistant: a free (but not open source) design tool that allows straightforward
design of phase locked loops and other closed loop systems at the transfer function level.

 Note: in Linux version, this program as run as command plldesign
11) Verilator: a free, open source tool written by Wilson Snyder to translate synthesizable Verilog

code into a C++ class.
12) Icarus Verilog: a free, open source Verilog simulator written by Stephen Williams, which is

used as the primary simulator when running VppSim simulations.
13) NGspice: a free, open source SPICE simulator based on Berkeley Spice3.
14) GTKWave: (Windows and MAC OS X only) a free, open source waveform viewer written

by Tony Bybell for viewing digital (and analog) signals stored within LXT (and other) files.

This document is intended as a primer that covers basic use of CppSim and VppSim in conjunction
with Sue2, CppSimView, GTKWave, Verilator, and Matlab (or Octave). CppSim and VppSim both
use Sue2 as the schematic editor for entering designs (a different version of CppSim/VppSim is also
available at http://www.cppsim.com to support Cadence Composer). Simulations are run within either
Sue, Python, Octave, or Matlab. Simulation results are then viewed in CppSimView, GTKWave,
Python, Octave, or Matlab. CppSimView is the preferred environment for interactively examining
analog signals and GTKWave for interactively examining large sets of digital signals accompanied by
smaller numbers of analog signals. Python, Matlab, or Octave, in combination with the CppSim Data
module for Python or the Hspice Toolbox for Matlab/Octave, offers much more powerful post-
processing capabilities than CppSimView or GTKWave, and is the recommended environment for
doing more sophisticated CppSim/VppSim simulations.

While this document covers enough information on CppSim and VppSim to get a good idea of their
operation, a more full description of the capabilities and functionality of CppSim and its various sub-
packages are provided in the manuals available within the Doc menu of Sue2. In particular, the
CppSim Reference Manual, cppsimdoc.pdf, provides details on the underlying operation of CppSim,
information on how to create CppSim module and simulation files, and examples of how to use the
various CppSim classes. The Sue2, CppSim Data module for Python, and Hspice Toolbox manuals
are provided in the files sue2_manual.pdf, cppsimdata_for_python.pdf, and hspice_toolbox.pdf,
respectively, and are available in the Doc menu of Sue2. Note that there is no separate manual for
CppSimView – this document contains a full description of CppSimView.

 4

Installation and Setup

The CppSim/VppSim framework is available for Windows (Windows 2000 and above), Mac OS X
(Lion and above), and Linux (Redhat/Centos Enterprise 5). Of the three distributions, the Windows
version is the easiest to install and the Linux version is the hardest to install in terms of their
requirements for outside packages. Installation details of each distribution are provided below.

A. Windows
Go to the CppSim web page http://www.cppsim.com/download, and then download the file for
Windows (which corresponds to the setup file setup_cppsim5.exe). To install, simply run
setup_cppsim5.exe in Windows (i.e., double-click on setup_cppsim5.exe in Windows Explorer) and
follow the instructions. To run Sue2 or CppSimView, click on their respective Windows icons once
the installation process has completed and Windows has restarted.

Note that some computers require installation of the Microsoft Visual C++ 2008 Redistributable
Package (x86) in order to run NGspice. This is a small set of DLL files, and can be downloaded from
the Microsoft website at: http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=29

B. Mac OS X

Go to the CppSim web page http://www.cppsim.com/download, and then download the file for Mac
OS X (which corresponds to the file CppSimMacInstall.dmg). To install, simply open
CppSimMacInstall.dmg by double-clicking on it in the Finder window. A window should appear with
four icons (Sue2, CppSimView, PllDesign, and GTKwave) as well as the CppSim folder. As stated
in the window, drag the four icons into the Application folder and then drag the CppSim folder into
your home directory by making use of the Finder window.

Unlike the Windows version, the Mac OS X version does not come with a C++ compiler. Instead,
you need to obtain the Command Line Tools of Xcode which are contained in a freely available
package from the Apple Developer website. For those who do not wish to login to the Apple
Developer website, an alternative approach is to install Xcode from the Apple App store. Once Xcode
has completed its installation, you should then start Xcode and select the Preferences item under the
Xcode menu (at the very top of the screen, second menu item from the left). If you then click on the
Downloads tab of the Preferences window that appears, you will see an option to install the
Command Line Tools.

C. Linux
Go to the CppSim web page http://www.cppsim.com/download, and then download the file for Linux
(which corresponds to the file cppsim_linux_install.tar.gz). To install, place the file
cppsim_linux_install.tar.gz into your home directory and then type the following command at the
Linux shell prompt:

> tar zxvf cppsim_linux_install.tar.gz

You should then see the CppSim directory as well as the file cppsim_bashrc_file_example.
Assuming you are content keeping the CppSim directory, in your home directory, you simply need to
update your ~/.bashrc file according to the example shown in cppsim_bashrc_file_example. If you
wish to alter the locations of the CppSim and CppSimShared directories, you need to modify the
environment variables CPPSIMHOME and CPPSIMSHAREDHOME as should be evident upon

 5

examination of the cppsim_bashrc_file_example file. Upon making your changes to the ~/.bashrc
file, you may then delete the cppsim_bashrc_file_example file.

In the case of Linux, several important packages must be installed to achieve proper operation of
CppSim and VppSim:

 g++: required to compile and run CppSim and VppSim simulations
o Available within the standard packages of Redhat/Centos

 Tcl/Tk: required by the Sue2 program
o Available within the standard packages of Redhat/Centos

 Wine: required by the CppSimView and the PLL Design Assistant programs
o Available from http://www.winehq.org

 GTKwave: a useful waveform viewer for examining signals produced by CppSim/VppSim
o Available from http://gtkwave.sourceforge.net

 Zlib: required by Icarus Verilog to support LX2 files for GTKwave
o Available from http://zlib.net

 Emacs: a convenient graphical text editor for modifying CppSim and VppSim files
o Available within the standard packages of Redhat/Centos

Known Bugs

1) True library support is lacking in Sue2 right now (i.e., name clashing occurs between cells of
the same name even though they may be in different libraries). This issue is taken care of by
using the Import and Export tools of Sue2.

2) The copy to clipboard operations for CppSimView and the PLL Design Assistant do not work
in the Mac OS X and Linux versions.

3) The undo command in Sue2 is broken.
4) Sometimes the history file of CppSimView gets corrupted and does not allow CppSimView to

start. If so, within Windows Explorer, go to the SimRuns directory associated with the current
cell of Sue2, and then erase the file called cppsimview_history.mat within that directory. As
an example, if Sue2 is currently displaying cell sd_synth_fast within library
Synthesizer_Examples, then delete the file cppsimview_history.mat located within directory
c:/CppSim/SimRuns/Synthesizer_Examples/sd_synth_fast (where c:/CppSim corresponds
to the base directory location that CppSim was installed at, and may be different for different
machines).

5) When using electrical elements, there is a limit on how many parameters can be utilized within
a given electrical element “bundle”. If you exceed this limit, you will see an error message:

--------------- Net2Code Version: 5.2 ---------------

error in 'add_param_value': maximum allowable number of
parameters exceeded
 to fix, change LENGTH_PAR_LIST in source code

To deal with this issue, you should examine whether there are parameters of the electrical
elements involved which have fixed values. If that is the case, you can create a new version of
the given electrical element primitives (see the “Creating New CppSim Primitives” section of
this manual on how to create new modules) with a reduced number of parameters (i.e., set the

 6

parameter values in the cppsim code rather than declaring the parameter). By making use of
these new electrical element primitives, you can thereby reduce the number of parameters
within a given electrical element cluster, and therefore hopefully avoid the above error
message.

The Basics of Running CppSim Simulations

To explain the basic operation of running CppSim, let us now walk through an example using Sue2.
Since CppSimView works in conjunction with Sue2 to view simulation results, we will also step the
reader through its operation, as well. For the remainder of this manual, we will use the Windows
version for our examples, but the Mac OS X and Linux versions are very similar.

A. Running a CppSim Simulation in Sue2

 Start the Sue2 program by performing the following action:
o Windows: double-click on the Sue2 icon on the Windows Desktop.
o Mac OS X: double-click on the Sue2 app in the Applications folder
o Linux: at the Linux prompt, run the command sue2

You should see a window similar to what is shown below. Note that there is one schematic
listbox and two icon listboxes, each of which lists cells from the library that is selected by
pushing their top button as indicated by the figure.

 Select the sd_synth_fast schematic by clicking on it in the schematic listbox. Note that the
icon listboxes will be used later to add modules to a given schematic. Sue2 should now

icon
listboxes

schematic
listbox

select
library

 7

display the sd_synth_fast schematic as shown below. Note that the CppSim Simulation
menu item is obtained by clicking on Tools (circled in red).

 Clicking on the CppSim Simulation menu item, as shown above, yields the CppSim Run

Menu as shown below. Note the Compile/Run button, which is circled in red.

 8

 Run a CppSim simulation on the sd_synth_fast cell by clicking on the Compile/Run button

shown in the above figure. You should see some warning messages, and then finally the
window should appear as shown below.

 To view results of the simulation, start CppSimView by performing the following action:
o Windows: double-click on the CppSimView icon on the Windows Desktop.
o Mac OS X: double-click on the CppSimView app in the Applications folder
o Linux: at the Linux prompt, run the command cppsimview

You should see a new window appear as shown below.

 9

 To view simulation results for a given signal within the sd_synth_fast cell, you need to first
choose an appropriate Output File and then the Node that the signal is associated with. In the
window shown above, first click on the No Output File radio button, and choose test.tr0 as the
output file. Next click on the No Nodes radio button, and then double-click first on node
sd_in and then on node vin. The resulting CppSimView window should appear as shown
below, and the Plot Window should show the corresponding signal waveforms.

 Now click on Zoom (circled above in red). The resulting Plot Window should appear as
shown below.

 Consider clicking on different buttons in the Plot Window to zoom into portions of the signals
and perform various other operations. One convenient feature is the use of the arrow keys on
your keyboard to zoom in, zoom out, and pan left and right. The down arrow key zooms in,
the up arrow key zooms out, and the left and right arrow keys pan left and right, respectively.

 10

B. Editing CppSim Module Descriptions

There are several ways to edit CppSim module descriptions of the various blocks used within a given
design. Each of them displays a text file in Emacs (a freely available text editor) corresponding to the
CppSim code of the module, the template of which is described in more detail in the CppSim
Reference Manual (i.e., cppsimdoc.pdf). Here we will show three different ways of conveniently
accessing the module code text file of a given module from the Sue2 environment.

 Continuing with the example from the previous section, double-click on the add2 module
circled in red within the Hierarchy File section as shown below. A pop-up menu will appear,
as also shown below, within which you should push the Edit CppSim code button (circled in
red) to view the CppSim module description code of the add2 module.

 After performing the above operations, you should see the Emacs editor window shown

below. Note that the CppSim module code is in template form, with fields such as the module
name, parameters, inputs and outputs, etc. The best way to understand the use of these fields
is to check out different module code examples. Also, the CppSim Reference Manual,
cppsimdoc.pdf, should also be examined.

 11

.

 Within the CppSim schematic window, double-click on a given module such as add2 (circled
in red in the figure below). You may then edit the module code by pushing the Edit CppSim
code button, as circled below.

 Finally, within the icons listbox, double-click on a given module such as add2 as shown

below. A window will again appear offering an Edit CppSim code button for the module.

 12

C. Editing Simulation Files (i.e., test.par files)

While the CppSim module code dictates the behavior of individual modules, there needs to be
simulation specifications specific to a given cell schematic (i.e., interconnection of modules) when
performing a CppSim simulation. Such specifications include the time step of the simulator, the
number of simulation samples to be calculated, and the value of any top level or global parameters.
CppSim allows multiple sets of such specifications, each contained within an individual Sim File.
Typically, there is only one Sim File, which is labeled by default as test.par.

 Continuing with the example of the previous section, click on the Edit Sim File button within
the CppSim Run Menu window as shown below. An Emacs window will then appear that
displays the Sim File specified in the field as circled below. As shown in the Emacs window
below, the Sim File is specified in template form to indicate the simulation time step (Ts), the
number of time steps (num_sim_steps), etc. For more information on these fields, check out
the CppSim Reference Manual (cppsimdoc.pdf)

 13

 Note that if no Sim File exists, then pressing the Edit Sim File button within the CppSim
Run Menu will create a new sim file (with name test.par) that can be edited and saved.

CppSim versus VppSim for Simulation of Verilog Modules

We now discuss inclusion of Verilog modules within CppSim by walking through an example using
Sue2, CppSimView, and GTKWave. We then repeat the same example using VppSim, and compare
and contrast CppSim versus VppSim for simulation of digital systems. In the exercises to follow, we
will assume that the reader has already read the previous section on the basics of running CppSim
simulations.

A. Running a CppSim Simulation with a Verilog Module

 Within Sue2, click on the schematic library button as indicated in the figure below. You

should see a list of libraries appear. Choose Verilog_Examples as the library.

 14

 Within the schematic listbox, which show now indicate Verilog_Examples as its library,
select the schematic test_second_order_sd as indicated below.

 Within the test_second_order_sd schematic, double-click on the second_order_sd module as

indicated below. The property menu should appear for the second_order_sd module as also
shown in the figure.

Select schematic
library

 15

 Click on the CppSim button in the property menu of the second_order_sd module. You
should see Verilog appear as an option as shown below. Select Verilog and then click on Edit
as indicated below.

 The resulting editor window displays Verilog code for the second_order_sd module as shown
below. One should note that you can also include sub-modules that are required for the main
module (second_order_sd, in this case) to work. Once you have completed examination of the
code, close the editor window as well as the property editor window.

 16

 Now click on the CppSim Simulation item under the Tools menu item as shown below.

 Within the Hierarchy File section of the CppSim Run Menu that appears, scroll down to the
second_order_sd entry and double-click on it as indicated below. A new window will appear,
as also shown below, which allows selection of the module code for the simulation. Keep the
code type as Verilog as shown below, and click on Done to terminate the code selection
window.

 17

 Click on Compile/Run in the CppSim Run Menu in order to run the CppSim simulation with
the included Verilog module. Upon completion of the simulation, scroll up the Result window
and examine the simulation messages. You should notice that Verilator was run on the
second_order_sd module, which turned its Verilog code into an equivalent C++ class.
CppSim then seamlessly incorporated this C++ class into the simulation. A key restriction of
Verilator is that it does not support behavioral Verilog code. Rather, the Verilog code must be
synthesizable. As we will see, this is one of the key differences between CppSim and VppSim
since VppSim allows both behavioral and synthesizable Verilog code to be utilized.

 18

 If you are already running CppSimView, push the Synch button. Otherwise, click on the
CppSimView icon to open it. It should appear as shown below with test_second_order_sd in
its title banner.

 Click on the Output File and Nodes radio buttons to obtain a list of nodes as shown below.
One should notice that the bussed signals in the schematic are represented by their equivalent
integer values for display by CppSimView. As an example, in_bus<15:0> is represented by
the integer value in_bus_15_0 (note that the probe: statement in the test.par file indicated a

 19

subset of the 24 bits to be chosen), and out_bus<7:0> is represented by the integer value
out_bus_7_0.

 Double-click on nodes in and out. The resulting plot window should appear as shown below.

B. Utilizing GTKWave to view CppSim Simulations

In contrast to CppSimView, GTKWave offers a much more flexible means of viewing digital signals.
Here we illustrate its use with CppSim when bussed signals are included in the system simulation.

 Assuming you have completed the previous section, click on the Edit Sim File button within
the CppSim Run Menu as shown below.

 20

 Within the editor window that appears, make the following alterations such that the file
appears as below

o Comment out the line output: test start_sample=20e3….
o Uncomment the line output: test filetype=gtkwave
o Save the file

 21

 Click on the Compile/Run button in the CppSim Run Menu to run the CppSim Simulation.
You may notice that the simulation runs slower, which is due to the fact that compression
algorithm used to store data for GTKWave is computationally intensive.

 To view results of the simulation, start GTKWave by performing the following action:
o Windows: double-click on the GTKWave icon on the Windows Desktop.
o Mac OS X: double-click on the gtkwave app in the Applications folder
o Linux: at the Linux prompt, run the command gtkwave

In the new window that appears, click on the Open New Tab entry under the File menu as
shown below.

 22

 In the Open file window that appears, go to directory
c:\CppSim\SimRuns\Verilog_Examples\test_second_order_sd, and then select file
test_0.fst as indicated below. Note that, in general, all files produced by CppSim or VppSim
for GTKWave will have the suffix .fst.

 23

 Upon opening the test_0.fst file, the top level of the module will appear in the main GTKWave
window as shown below. Clicking on the + sign to the left of xi_top will expand into the list
of instances for which probe: data has been specified in the simulation file (i.e., test.par file).
Clicking on xi_top itself will show the signals in the top level which have been specified by
the probe: statement.

 After exploring the above options for viewing signals, click on xi_top to see the top level

signals as shown below. Drag in_bus[15:0] and out_bus[7:0] from the Signals box into the
Waves section in order to see their waveforms as shown below.

 24

 While in the GTKWave window, hit the f key to increase the time span to display the entire

simulation time frame.

 25

 Left click on the in_bus[15:0] in the Signals box, as shown below, and push the a key to
change its display to analog mode. Do the same to the out_bus[7:0] signal to get the plots
shown below. Note that right clicking on these signals in the Signals box allows various
representations (i.e., decimal, hex, binary, etc.) to be displayed for the waveforem.

 Within the Waves part of the window, right-click with the mouse and then slide the mouse

pointer across a region to zoom into. Upon releasing the mouse button, the waveform will be
re-plotted according to the selected zoom region. As shown in the figure below, it appears that
a rising step at the input leads to a falling step at the output. However, it is important to recall
that the actual input has 24 rather than 16 bits.

 26

 A more accurate picture is seen by looking at the full 24 bits, which is available within
instance xi0. As shown below, we see that the full input actually has a falling edge which
corresponds to the falling edge seen at the output.

 27

C. Running a VppSim Simulation with a Verilog Module

 Returning to Sue2, click on VppSim Simulation within the Tools menu as shown below. A

VppSim Run Menu window should appear.

 Click on the Compile/Run button within the VppSim Run Menu window. The simulation
should complete such that the VppSim Run Menu looks similar to below.

 Scroll up the Result section in the VppSim Run Menu to see the various messages produced
during the simulation. One key message is shown below, namely that filetype=gtkwave is not

 28

supported for output: statements when using VppSim. Note that filetype=matlab, which is
supported, is the default setting for output: commands. We will return to this issue soon.

 Since filetype=gtkwave is not supported for VppSim, a different method must be used to save
signals to be viewed by GTKWave. Fortunately, this is straightforward. To see how this is
done, click on Edit Sim File in the Run VppSim Menu window shown above. Scroll to the
bottom of the editor window that appears and you will see $dumpfile and $dumpvars
commands within the add_verilog_test_module_statements: command as shown below. The
add_verilog_test_module_statements: command adds statements to the test module portion of
a Verilog testbench that is autogenerated by VppSim. As such, we simply use the standard
Verilog testbench commands to save signals for viewing by GTKWave.

 29

 Now that we have seen how VppSim saves signals for GTKWave, let’s move forward with
viewing them. Within GTKWave, click on Open New Tab and now select test.fst (not
test_0.fst) as the file to view.

 30

 Using the same methods discussed in the previous section, you should be able to obtain a

zoomed-in version of the input and output signals as shown below.

 31

 One can also save signals for CppSimView, Matlab/Octave, and Python. To do so, click on
Edit Sim File in the VppSim Run Menu (or simply edit the file if you still have it open from
the previous exercise) and perform the following modifications to arrive at the file as shown
below:

o Comment out the line output: test filetype=gtkwave
o Uncomment the line output: test start_sample=20e3 ….

 Click on Compile/Run in the VppSim Run Menu to re-run VppSim with the new output:
command settings. The simulation should completely as normal.

 32

 Either open CppSimView and click on the Load button, or simply click on the Load button if
it is still open from the previous exercise in this manual. You will see many of the same
signals as were present for CppSim, although some are missing since VppSim doesn’t support
the * command in saving signals. Click Reset Node List and then double-click on signals in
and out in order to see the waveforms shown below.

D. Key Distinguishing Features between CppSim and VppSim

The above exercises illustrated that either CppSim or VppSim could be used to run simulations with
combined CppSim and Verilog blocks. Also, either CppSimView or GTKWave can be used to view
results, with GTKWave being more handy when digital signals are present. Switching between
CppSim and VppSim is fairly seamless as the same Simulation file (i.e., test.par) can be utilized. As
such, a natural question to ask is why one might want to prefer one versus the other for simulating
systems?

At a high level, we compare CppSim and VppSim as follows:

 CppSim produces C++ code for the overall simulation. When including Verilog modules,
Verilator (written by Wilson Snyder) is used to convert the Verilog modules to C++ classes,
which are directly incorporated within the overall simulation. As such, Verilog support is
limited to what Verilator can handle, which is currently restricted to synthesizable code.
Verilog testbenches are not supported since the main simulation engine is custom written and
compiled C++ code.

 VppSim produces Verilog code for the overall simulation, and therefore directly supports
Verilog testbenches as well as synthesizable and functional Verilog code. In the Windows
version of CppSim, Icarus Verilog (written by Stephen Williams) is used as the main Verilog
simulator, and VppSim is used to seamlessly incorporate CppSim modules and create the
overall Verilog description. To incorporate the CppSim modules, VppSim first creates their

 33

corresonding C++ classes and connects Verilog wrapper modules which access the C++
classes using the Verilog PLI. In doing so, full CppSim module support is achieved without
translation, and standard Verilog simulation engines are supported since they universally
include the PLI interface. To include Verilog testbench statements, two Simulation file (i.e.,
test.par) commands are available (as further described in the CppSim Reference Manual):

o add_verilog_test_file_statements: includes statements at the very top level of
Verilog simulation, which is especially useful for `define and `include Verilog
statements.

o add_verilog_test_module_statements: includes statements within the top module of
the Verilog code, which is especially useful for controlling top level signal values and
creating GTKWave dumpfiles as shown earlier in this section.

In addition to including testbench statements using the above commands, one can also include
Verilog modules which are not included within the schematic. Two commands are provided
for this:

o add_top_verilog_library_file_statements: places the included Verilog modules at
the beginning of the Verilog simulation file.

o add_bottom_verilog_library_file_statements: places the included Verilog modules
at the end of the Verilog simulation file. This is useful for avoiding statements such as
timescale in the included modules for impacting the schematic level modules in the
simulation.

The key issue between CppSim and VppSim is the use of custom C++ code versus a Verilog
simulator, respectively, for the simulation engine. Some key comparison points between these two
approaches are as follows:

 The C++ code generated by CppSim corresponds to constant time step simulation of the
overall system. This method is quite useful for analog blocks such as filters and signals such as
noise which must be updated on a regular basis, and directly compiled C++ code is quite
efficient at doing such regular operations.

 The Verilog code generated by VppSim corresponds to event driven simulation of the overall
system based on signal transitions. Since signal transitions within digital systems are typically
sparse, event-driven simulation can be much faster than constant-time simulation for such
systems. However, the extra overhead of scheduling events is a burden when dealing with
blocks that need constant update such as filters.

Given the above, we see that CppSim is best for analog-intensive systems that include digital blocks
for support of the analog functionality. In contrast, VppSim is best for digital-intensive systems in
which analog blocks play a less significant role, especially for cases where Verilog testbenches are
desirable. Since the main tradeoff is simulation speed, the combination of CppSim and VppSim
allows a complementary environment between analog and digital designers in which each side can
easily share blocks with the other.

 34

The Basics of Including Electrical Elements in CppSim/VppSim Simulations

Both CppSim and VppSim support the inclusion of electrical elements within simulations in which
nodal analysis is used to solve for the nodal signal values. The key issues associated with including
such elements are discussed here, with examples focusing on CppSim since VppSim will be identical
from the user standpoint.

A. Including Electrical Elements within System Descriptions

 Within Sue2, go to the sd_synth_fast_electrical schematic by selecting this cell within the

Synthesizer_Examples library using the schematic listbox as indicated below.

 Double-click on element R0 and then click on the Edit button within the properties window
that appears.

 35

 As we see from the code below, R0 corresponds to a module named resistor. Rather than
having a code: section, resistor is instead described with an electrical_element: command.
This command can be composed of one or many lines which include electrical primitives such
as resistors, capacitors, inductors, voltage_controlled voltage sources, etc. Please see the
electrical_element: description within the CppSim Reference Manual for more details on this
command. In this case, we see that the electrical_element: command consists of only one
element – a resistor with terminals and parameters matching that of the module. Note that for
electrical_element: modules, it does not matter if the terminals correspond to input or output
nodes since nodal analysis is used to solve for the signal values.

 Open the CppSim Run Menu window and then click on Compile/Run to run the CppSim

simulation on the schematic. You will notice that it runs quite quickly. In fact, if you compare
the time for completing the simulation versus running CppSim on the sd_synth_fast
schematic, you’ll notice that there is little speed penalty in using the nodal version of the loop
filter as opposed to a code: based cppsim module such as leadlagfilter as used within
schematic sd_synth_fast.

 36

 Click on the CppSimView icon to start the viewer, and then examine the vin signal as shown
below. In general, you can probe nodes associated with nodal elements in the same fashion as
those produced by CppSim modules containing a code: section.

B. Key Constraints When Using Electrical Elements

CppSim and VppSim are focused on achieving fast simulation at the system level. In general, nodal
analysis of large systems becomes prohibitively expensive in terms of computation time. To maintain
fast speed, CppSim and VppSim apply the following constraints when using electrical elements:

 Only linear electrical primitives and switches are supported. Such primitives include resistors,
capacitors, inductors, voltage-controlled voltage and current sources, current-controlled
current sources, independent voltage and current sources, and electrical switches with finite on
and off resistance. The electrical_element: command description within the CppSim
Reference Manual contains more details on these supported primitives.

 Coupling between electrical elements does not extend beyond a single schematic level in the
system hierarchy. When going between levels of hierarchy, ideal voltage buffers are inserted at
the schematic input and output boundaries.

 All electrical_element: primitives of a given module are inserted flat into the schematic
within which the corresponding instance is placed. As such, even though coupling is not
supported between electrical elements at different schematic levels, one can create higher level
elements such as detailed linear two-port modules by placing their description within an
electrical_element: based module as opposed to a schematic-based module.

 Numerical integration of the nodal analysis formulation of electrical elements provides one
parameter to the user, electrical_integration_damping_factor, which takes on values
between 0 and 1. The default value of 1 corresponds to backward Euler integration, whereas a
value of 0 corresponds to trapezoidal integration. As the parameter varies between 1 and 0, the
numerical integration method transitions between these two methods. The value of this
parameter for the overall simulation is set by placing the
electrical_integration_damping_factor: command within the simulation file. However, it

 37

can also be set individually for modules containing electrical elements at the schematic level at
lower levels of hierarchy. In such case, the module must simply contain a parameter called
electrical_integration_damping_factor which is set in the range of 0 to 1.

To better understand the above constraints, we will look at an example that shows different
approaches to representing cascaded RC filters.

 Within Sue2, go to the test_electrical_rc_filters schematic by selecting this cell within the
Electrical_Examples library using the schematic listbox as indicated below.

 The above example contains various approaches to representing cascaded RC filter sections:
1) A resistor element with distributed capacitive loading that is implemented with the

electrical_element: command (Note that the voltage buffer included in the above
schematic is simply there to illustrate how voltage-controlled voltage sources can be
utilized).
o To see the code as shown below, double-click on R3 in the schematic and then click on

Edit in the properties menu that appears. Note that the electrical_element: command
consists of five lines, the first two of which correspond to the resistance being slit into
two, and last three being the capacitors that connect to each side of the split resistance.
Also note that the parameter values in each line can consist of expressions which
involve the overall module parameters.

(1)

(2)

(3)

(4)

(5)

(6)

 38

2) A cascaded two-stage RC filter section. In this case, the two stages are coupled such that
the poles formed by the network are altered by their mutual loading.

3) A cascaded two-stage RC filter network that has the same frequency response as directly
drawing the RC stages as done in (2). Each RC section is implemented as a CppSim
module using the electrical_element: command.

o To see the code as shown below, double-click on xi2 in the schematic and then
click on Edit in the properties menu that appears. Note that the
electrical_element: command consists of two lines in this case, one of which
corresponds to the resistor and the other to the capacitor in the first order RC
network represented by the module.

6) A cascaded two-stage RC filter consisting of two first order RC stages implemented as
CppSim modules with the code: command. Unlike cases (2) and (3) above, the two first order

 39

stages are un-coupled such that the frequency responses consists of two poles at the same
frequency (i.e., 1/(2RC)).

o To see the code as shown below, double-click on xi8 in the schematic and then click on
Edit in the properties menu that appears. Note that the code: command makes use of
the CppSim Filter class to easily realize the lead-lag filter operation.

7) A cascaded two-stage RC filter consisting of two first order RC stages implemented as RC
schematics. Since the RC schematics occur at a lower level of hierarchy, they are uncoupled
from each other. As such, the frequency response is the same as that of case (4).

o To see the schematic as shown below, single-click on xi6 and then press e. For this
schematic, it is important that the input and output pins be configured as shown since
it will impact how unity gain voltage buffers will effectively be inserted when the
module is instantiated within other schematics.

8) A cascaded two-stage RC filter consisting of two first order RC stages implemented as RC
schematics. This is the essentially the same as case (5) above except for the setting of
parameter electrical_integration_damping_factor. In case (5), this parameter was set to 0
which corresponds to trapezoidal integration for nodal analysis. It turns out that trapezoidal
integration matches the frequency response of the CppSim Filter class which uses the bilinear
transform to create its filter response. In this case, the parameter
electrical_integration_damping_factor is instead set to 1 (the default value for nodal

 40

analysis in CppSim), which corresponds to backward Euler integration. Case (6) will therefore
give somewhat different results than cases (4) and (5), though the differences will become
negligent for sufficiently small sample time, Ts, of the simulation. In general, backward Euler
is chosen as the default method since it avoids artificial ringing in simulations which can occur
when using the trapezoidal integration method.

Using The CppSim Library Manager

The CppSim Library Manager provides the ability to do the following tasks related to libraries:

 Creation and deletion,
 Inclusion in or removal from the sue.lib file
 Importing and exporting to allow easy transfer to other users

To explain the second item in more detail, note that Sue2 only pays attention to libraries that are
contained in its sue.lib file (located in c:/CppSim/Sue2/sue.lib).

In this section we will discuss the key points related to the above operations. One key issue to
consider for all library operations is that Sue2 considers libraries only as a means to organize
modules, and not as a means to distinguish between modules. In other words, all modules must have a
unique name in Sue2 – you cannot have more than one module with the same name, even if those
modules are in different libraries. As such, the CppSim Library Manager is set up to check for such
name clashing and to take steps to deal with it. This issue is explained in more detail in the sections to
follow.

Another key issue is that the CppSim package separates libraries into Private and Shared categories.
Private libraries are located in c:/CppSim/SueLib and c:/CppSim/CadenceLib for the Sue2 modules
and their corresponding CppSim module code, respectively. Shared libraries are located in
c:/CppSim/CppSimShared/SueLib and c:/CppSim/CppSimShared/CadenceLib for the Sue2 modules
and their corresponding CppSim module code, respectively. Note that the CppSimShared directory
can be placed at an arbitrary location on the system in order to facilitate sharing of modules between
several users, and is therefore not constrained to its default location of c:/CppSim/CppSimShared.

One important point in working with Private and Shared libraries is that Private libraries take
precedence over Shared ones in the case of having a common library name. As an example, in the
case where there is a CppSimShared library in both the Private and Shared locations, the Shared
version of the library will be completely ignored (i.e., all of its modules will be ignored) and only the
Private version considered. The CppSim Library Manager circumvents the precedence relationship
by automatically renaming the Private version of the library in case the Shared version is desired.
This renaming will only be observed if one looks at the actual Private library directory name (i.e.,
using Windows Explorer), and will be invisible to the user if they are doing all operations within the
CppSim Library Manager.

We now proceed with discussing the CppSim Library Manager in more detail.

A. Basic Operations

The CppSim library manager is part of the Sue2 package, and must be run from its Tools menu item.

 Within Sue2, select the schematic library as Synthesizer_Examples and the schematic
module as sd_synth_fast as indicated in the figure below.

 41

 Now click on the Library Manager option under the Tools menu item as also shown in the
figure below.

 The CppSim Library Manager window should appear as shown below.

Since many of the above operations are fairly obvious, we will simply discuss the key points of the
overall interface:

Select schematic
library

 42

sue.lib Operations

 Adding or removing a library from the sue.lib file has no impact on the actual files contained
in that library. Instead, Sue2 is simply directed to either consider or ignore those files. This
feature is mainly directed toward streamlining Sue2 operations such that only those libraries of
key interest are considered at a given time even though more libraries are present in the
package.

 Name clashes between cells are considered for all modules that are included in the sue.lib file.
As such, if you attempt to add a library that has modules which will name clash with existing
modules, the Library Manager will not allow the library to be added.

 In the case where there are name clashes and you do indeed want to access the modules in the
library, one possibility is to enable automatic renaming of the modules by first exporting them
and then importing them using the Import Library Tool discussed later in this document.
The export operation is done by first clicking on the Add Library button in the CppSim
Library Manager, and then by clicking on the Export Library Modules button in the resulting
window as shown below.

 Libraries to be added are separated into Private and Shared versions, which are distinguished
by their directory locations (see the discussion of Private and Shared libraries in the
beginning portion of this section). Using the Add Library command allows use of either the
Private or Shared version or neither one of them. Note that you cannot include both Private
and Shared versions of the same library. Note that if the Shared version of a library is chosen
instead of the Private version, the CppSim Library Manager changes the directory name of
the Private version. This name change will only be observed if one views the Private
directory name directly (such as by using Windows Explorer), and will be invisible when
working within the CppSim Library Manager.

 The schematic win., icon1 win., and icon2 win. buttons in the CppSim Library Manager
window (circled below) allow default settings for the starting library shown in each of those
windows. Note that in the Library: list, the first entry (i.e., Synthesizer_Examples)
corresponds to the starting schematic window library, the second entry (i.e.,

 43

CppSimModules) corresponds to the starting icon1 window library, and the third entry (i.e.,
devices) corresponds to the starting icon2 window library.

Library Operations and Module Operations

These are fairly straightforward to figure out, so that the user is encouraged to play around with the
various buttons to better understand their functionality.

B. Exporting CppSim Libraries

The Export Library Tool allows a library to be archived into a .tar.gz file, which can then be easily
passed on to other users or archived for backup. A key feature of this tool is that it not only exports
the modules within the selected library, but also included any modules from other libraries that the
targeted library modules depend on. By doing so, every dependency of the library is included in the
exported file, so that other users can reliably use its corresponding modules without needing to install
additional supporting libraries.

 To access the Export Library Tool, click on its associated button within the CppSim
Library Manager window (as shown below).

 44

 To export a given library, simply select it in the Source Library: list and then press the
Export button, as indicated in the figure below. The resulting export file (i.e.,
synthesizer_examples.tar.gz in this case) will be located in c:/CppSim/Import_Export.

C. Importing CppSim Libraries Generated from the Export Library Tool

The Import Library Tool allows a CppSim library to be imported from either a .tar.gz file created
by the Export Library Tool (as discussed in the previous section). One should note that this
operation is fairly sophisticated in order to avoid name clash issues between newly imported versus
previously existing modules. In particular, all modules to be considered for import will be checked to
see if their name coincides with any existing modules in the package (regardless of their library

 45

location). If there is indeed a name clash, the Sue2 file and CppSim code file of the to-be-imported
and existing module are compared to see if there are any differences between them. If there are no
differences (i.e., the Sue2 and CppSim files of the to-be-imported and existing modules match each
other), then the module to be imported is ignored since it is assumed that it already exists in the
package. If there are indeed differences, then the name of the module to be imported is changed (i.e.,
add2 would become add2_2, vco_2 would become vco_3, etc.) and then imported into the package.
The name changes are then propagated to all imported schematics that use the relevant cells.

We now explain basic operations of using the Import Library Tool

 Within the CppSim Library Manager window, click on the Import Library Tool button as
shown below.

 After performing the above operation, the Import CppSim Library window should appear as
shown below. In this case, assuming that you exported the Synthesizer_Examples library
while playing with the Export Library Tool in the previous section, you should see the option
of importing synthesizer_examples.tar.gz.

o The Destination Library corresponds to the library name that the imported modules will

be brought into. If the library does not currently exist, it will be automatically created. If
it does exist, then the Import tool will add the imported modules to whatever modules are
currently part of the library.

o The Source directory is nominally set at c:/CppSim/Import_Export, which is the place that
Exported libraries are sent. When dealing with CppSim Version 3, the Source directory
should not be changed from this value. However, if you want to import modules from a
CppSim Version 2 installation, this directory should be changed to the base location of
that installation (i.e., c:/CppSim_old, as an example). This will be discussed in more
detail in the next subsection.

 46

o The Preview and Import buttons are identical in most of the operations they perform,
with the key difference being that no modules are actually imported when using Preview.
The value of Preview is to observe error messages, which typically relate to issues
associated with name clashes, without having the Import operation follow through. Any
error messages could then be examined without having the extra issue of cleaning up a
problematic import operation.

 As an example, click on the Preview button (as circled above) with
synthesizer_examples.tar.gz chosen as the Source File/Library. You should see several
messages appear in the Result window, with the final message being displayed as shown
below. Here we see that no modules would be imported since they are already contained in the
distribution.

 47

D. Importing CppSim (Version 2) Libraries

The Import Library Tool also allows a CppSim (Version 2) library to be imported by simply
specifying the installation’s base directory location (i.e., c:/CppSim_old, as an example) as the
Source Directory. Note that this option only works with CppSim Version 2 installations, and not
with alternate CppSim Version 3 installations.

 Continuing with the example from the previous subsection, push the Browse button in the

Import CppSim Library window, and then select the base directory of a CppSim (Version 2)
installation. In the example shown in the figure below, we have chosen c:/CppSim_Version2.

 48

 Now choose a Source Library, and then either Preview or Import as desired.

Creating Matlab Mex Functions and Simulink S-Functions

One tremendous benefit of using C++ as a behavioral language is that the resulting code is portable
and can be accessed from other packages. In particular, it is relatively straightforward to embed
CppSim simulation files within other software packages such as Matlab and Simulink. In particular,
CppSim provides such support by automatically generating “wrapper” code to allow a given CppSim
system to be compiled into Matlab as a mex function or into Simulink as an S-function.
In this section, we will provide examples of creating a Matlab mex function and Simulink S-function.

A. Matlab Mex Function Generation

 Select the schematic sd_synth_fast so that Sue2 contains this cell as shown in the figure

below.

 Select the CppSim Simulation option within the Tools menu window, as also shown in the
figure below.

 49

 Within the CppSim Run Menu that pops up, click on the Edit Sim File button as shown in
the figure below.

 Notice the mex_prototype: statement in the Emacs window that appears from clicking the
Edit Sim File button. This statement must be included in the Sim File in order to create a
mex function. The format for this function is:

mex_prototype: [out1,out1] = func_name(in1,in2,param1,param2)

 50

 In this case, the outputs are chosen as signals sd_in and vin, the function name is
 sd_synth_fast, and the input parameter is num_sim_steps. Note that the mex_prototype:
 statement is explained in more detail in the CppSim Reference Manual (i.e., cppsimdoc.pdf).

 Within the CppSim Run Menu window, select Matlab as the Sim Mode option, and then click
on the Compile/Run button as shown in the figure below. As also shown in the figure, the
resulting messages indicate how to compile and run the mex function. Note that you need to
have a C++ compiler installed on your computer to enable the compile operation. Microsoft
provides a free "Express" version of their C++ compiler, and instructions for utilizing this with
Matlab are found at: http://www.mathworks.com/matlabcentral/fileexchange/22689

B. Simulink S-Function Generation

 Select the schematic sd_synth_fast_simulink so that Sue2 contains this cell as shown in the

figure below.

 Select the CppSim Simulation option within the Tools menu window, as also shown in the
figure below.

 51

 Within the CppSim Run Menu that pops up, click on the Edit Sim File button as shown in
the figure below.

 Notice the simulink_prototype: statement in the Emacs window that appears from clicking
the Edit Sim File button. This statement must be included in the Sim File in order to create
an S-function. The format for this function is:

 52

simulink_prototype: [out1,out1] = func_name(in1,in2,param1,param2)

In this case, the outputs are chosen as signals vin and out, the function name should be
specified as is sd_synth_fast_simulink, the input is sd_in, and the parameter is Ts. Note that
the simulink_prototype: statement is explained in more detail in the CppSim Reference
Manual (i.e., cppsimdoc.pdf).

 Within the CppSim Run Menu window, select Simulink as the Sim Mode option, and then
click on the Compile/Run button as shown in the figure below. As also shown in the figure,
the resulting messages indicate how to compile and run the S-function. Note that you need to
have a C++ compiler installed on your computer to enable the compile operation.

 53

Using Python with CppSim

While using the CppSim Run Menu and CppSimView is a convenient interface for beginners,
more advanced users may want to consider running their simulations and doing post-processing
tasks directly in Python. To use CppSim within Python, you simply need to import the CppSim
Data module (which comes with the standard CppSim installation) by including the following
lines in a given Python script:

import cppsimdata module
import os
import sys
if sys.platform == ‘darwin’:

home_dir = os.getenv("HOME")
sys.path.append(home_dir + ‘/CppSim/CppSimShared/Python’)

else:
cppsimsharedhome = os.getenv("CPPSIMSHAREDHOME")
sys.path.append(cppsimsharedhome + ‘/Python’)

from cppsimdata import *

 54

The CppSim Data module provides a class called CppSimData to allow easy loading of
simulation data into Python, a function called cppsim() to run CppSim simulations within Python,
and a supporting function for plotting phase noise. While we will show some simple examples
below, one should read the manual CppSim and Ngspice Data Modules for Python that is
available in the Doc menu of Sue2 for further details.

For the Python examples below, it is highly recommended that you download and install the
Express (i.e., free) version of the Enthought Canopy distribution of Python available at:

https://www.enthought.com/products/epd/free/

Note that for Windows platforms, you should download the 32-bit version of Canopy. For Mac
platforms (assumed to be 64-bit), you should download the 64-bit version of Canopy. For Linux
platforms, you should download the version that corresponds to your Linux operating system.

 As an example of running CppSim in Python, go to the simulation directory for the cell

sd_synth_fast by typing the following in the Editor window in Canopy Python (which we will
refer to as the Python prompt):

cd c:/CppSim/SimRuns/Synthesizer_Examples/sd_synth_fast

For the above command, you must substitute the proper path for CppSim in place of
c:/CppSim. If you type ls at the Python prompt, you will see the many files produced by
previously simulations. The simulation file, test.par, should and must be present in order for
the steps that follow to work. Also, you must have imported the cppsimdata module as
discussed above. The Canopy editor window below summarizes these operations:

 55

 Once you are in the above directory, type

cppsim()

at the Python prompt – this will run CppSim by default on the test.par file located in the
current directory. The cppsim() script will use the current directory information to determine
the name of the cell and library (the current directory is the cell name (i.e., sd_synth_fast),
and the next directory up is the library name (i.e., Synthesizer_Examples)) and then use this
information to automatically netlist the Sue2 cell and then run the simulation. The Canopy
editor window displays the result of running cppsim() as shown below:

 56

Note that if one desires to run CppSim on a different simulation file, such as test2.par for
instance, then type the following command at the Python prompt instead of the above:

cppsim(‘test2.par’)

 Once the run has completed, load the signals in file test.tr0 into Python by typing

data = CppSimData('test.tr0')

You can then view the signal names contained within this file by typing

data.lssig()

The Canopy editor window displays the result of running these commands as shown below:

 57

 The signals sd_in and vin are loaded into corresponding Python Numpy arrays as follows:

sd_in = data.evalsig('sd_in’)
vin = data.evalsig(‘vin’)

One can then perform post-processing or plotting of the above signals in Python as desired. As
an example, one can plot the vin signal by using the following commands:

from pylab import *
plot(vin)

These commands are also shown in the Canopy editor window below:

 58

Also, the resulting plot is shown below:

 59

Using Matlab with CppSim

To use CppSim within Matlab, users simply need to add the Hspice Toolbox commands (which
come with the standard CppSim installation) to the Matlab path. This operation is performed by
typing

addpath('c:/CppSim/CppSimShared/HspiceToolbox')

at the Matlab prompt, where c:/CppSim should be replaced by the actual path you chose for
CppSim during the installation.

Three types of CppSim operations are supported within Matlab – running CppSim simulations,
creating Matlab mex functions, and creating Simulink S-functions.

A. Running CppSim Simulations in Matlab

 As an example of running CppSim in Matlab, go to the simulation directory for the cell

sd_synth_fast by typing (in Matlab):

cd c:/CppSim/SimRuns/Synthesizer_Examples/sd_synth_fast

Again, you must substitute the proper path that you chose for CppSim in place of c:/CppSim.
If you type ls at the Matlab prompt, you will see the many files produced by previously
running simulations within CppSimView. The simulation file, test.par, should and must be
present in order for the steps that follow to work.

Once you are in the above directory, type

cppsim

at the Matlab prompt – this will run CppSim by default on the test.par file located in the
current directory. The cppsim script will use the current directory information to determine
the name of the cell and library (the current directory is the cell name (i.e., sd_synth_fast),
and the next directory up is the library name (i.e., Synthesizer_Examples)) and then use this
information to automatically netlist the Sue2 cell and then run the simulation. If one desires to
run CppSim on a different simulation file, such as test2.par for instance, then type the
following command at the Matlab prompt instead of the above:

cppsim test2.par

Once the run has completed, load the signals in file test.tr0 into Matlab by typing

x = loadsig_cppsim('test.tr0');

You can then view the signals contained within this file by typing

lssig(x);

 60

Finally, plot the signals sd_in and vin by typing

plotsig(x,'sd_in;vin');

 A key advantage of using Matlab is the greatly increased flexibility it offers for doing post-
processing. In particular, one can create Matlab scripts to load in CppSim output files (i.e.,
test.tr0, test.tr1, …) and then perform sophisticated processing on the signals they contain. To
do so, one needs to turn signals embedded within CppSim output files into Matlab signals.
This is achieved for signal vin in the above example by typing

vin = evalsig(x,’vin’);

in Matlab. The above operation allows one to now directly access the data values of vin in
Matlab. For instance, to view the first ten samples of vin, simply type

vin(1:10)

in Matlab.

It is worthwhile to examine the Hspice Toolbox manual (which is provided as the PDF
document: c:/CppSim/CppSimShared/HspiceToolbox/document.pdf) for more information on
the Matlab commands it offers related to viewing and post-processing. Also, a few post-
processing functions are available in c:/CppSim/CppSimShared/MatlabCode that perform
similar operations to the plot_pll_phasenoise(…) and plot_pll_jitter(…) functions in
CppSimView.

B. Creating Matlab Mex Functions

Assuming you have created a mex_prototype: statement within the Sim File (i.e., test.par) of a
cell, you can directly create and compile the mex function in Matlab.

 As an example of creating a mex function corresponding to a CppSim simulation in Matlab, go

to the simulation directory for the cell sd_synth_fast by typing (in Matlab):

cd c:/CppSim/SimRuns/Synthesizer_Examples/sd_synth_fast

Note that you must substitute the proper path that you chose for CppSim in place of
c:/CppSim.

Once you are in the above directory, type

cppsim2mex

at the Matlab prompt – this will run CppSim by default on the test.par file located in the
current directory. The cppsim2mex script will use the current directory information to
determine the name of the cell and library (the current directory is the cell name (i.e.,
sd_synth_fast), and the next directory up is the library name (i.e., Synthesizer_Examples))
and then use this information to automatically netlist the Sue2 cell, create the mex code for the

 61

CppSim simulation, and then compile it (assuming you have installed a C++ compiler on your
computer). If one desires to run the cppsim2mex script on a different simulation file, such as
test2.par for instance, then type the following command at the Matlab prompt instead of the
above:

cppsim2mex test2.par

C. Creating Simulink S-Functions

Assuming you have created a simulink_prototype: statement within the Sim File (i.e., test.par) of
a cell, you can directly create and compile the Simulink S-function in Matlab.

 As an example of creating an S-function corresponding to a CppSim simulation in Matlab, go

to the simulation directory for the cell sd_synth_fast_simulink by typing (in Matlab):

cd c:/CppSim/SimRuns/Synthesizer_Examples/sd_synth_fast_simulink

Note that you must substitute the proper path that you chose for CppSim in place of
c:/CppSim.

Once you are in the above directory, type

cppsim2simulink

at the Matlab prompt – this will run CppSim by default on the test.par file located in the
current directory. The cppsim2simulink script will use the current directory information to
determine the name of the cell and library (the current directory is the cell name (i.e.,
sd_synth_fast_simulink), and the next directory up is the library name (i.e.,
Synthesizer_Examples)) and then use this information to automatically netlist the Sue2 cell,
create the S-function code for the CppSim simulation, and then compile it (assuming you have
installed a C++ compiler on your computer). If one desires to run the cppsim2simulink script
on a different simulation file, such as test2.par for instance, then type the following command
at the Matlab prompt instead of the above:

cppsim2simulink test2.par

Killing Runaway CppSim Simulations

If you ever wish to kill an ongoing CppSim simulation, there are two ways to do it.

 If you have run the simulation from the CppSim Run Menu window, simply click on the Kill

Run button to end it as shown in the figure below.

 62

 An alternative method is to directly kill the process:
o In Windows: push Ctrl-Alt-Delete in Windows, left-click on the Processes tab of the

form that comes up, and then left-click on test.exe (or the appropriate name if the
simulation file was not test.par – i.e., test_new.par -> test_new.exe). You can search
among process by repeatedly hitting the first letter of the process you seek (i.e., press
the t key several times in this case). Once you have selected test.exe (or the
appropriate process), then left-click on End Process and then click Yes in the dialog
box that pops up.

o In Mac OS X: run the Activity Monitor from the /Applications/Utilities folder. Select
the application with process name test (or the appropriate name if the simulation file
was not test.par – i.e., test_new.par -> test_new), and then click on the Quit Process
button.

o In Linux: run the top command from the Linux shell prompt. Find the application with
process name test (or the appropriate name if the simulation file was not test.par – i.e.,
test_new.par -> test_new), and then type kill -9 test.

 63

More Details on CppSimView

In this section, we will examine more details related to using CppSimView to view simulation results
from CppSim. We will do so through example.

A. Preliminary Setup

 Within Sue2, open up the sd_synth_fast schematic within the Synthesizer_Examples library,

and then select the CppSim Simulation item from the Tools menu item as shown in the figure
below.

 In the CppSim Run Menu that comes up, click on the Compile/Run button to run the
CppSim simulation, as shown in the figure below.

 64

 Start CppSimView by performing the following action:
o Windows: double-click on the CppSimView icon on the Windows Desktop.
o Mac OS X: double-click on the CppSimView app in the Applications folder
o Linux: at the Linux prompt, run the command cppsimview

You should a window as shown below.

B. Selecting an Output File

 Click on the output file radio button (see circled button above) to select an output file

produced during the CppSim simulation. In this case, let us choose test.tr0. In practice,

 65

multiple output files are supported, which can be useful in case fancy triggering and
decimation routines are desired. See the test.par file for this example to see how triggering
was used to create test_noise.tr0, and refer to the CppSim Reference Manual (i.e.,
cppsimdoc.pdf) for further details.

C. Basic Plotting and Zooming Methods

 Click on the nodes radio button as circled below. Then enter an expression into the

command line and then click on the Plot button to produce a plot of the specified signals. In
the example below, we have specified that we would like to plot signals vin and sd_in added
together in one subplot and pfdout in the other subplot. Please refer to the Hspice Toolbox for
Matlab/Octave manual for a description of the notation used here.

 Now click on the Zoom button (circled in the above figure) to bring up zoom controls on the
plot as shown below. Each of the zoom keys has a respective hot key indicated by the
parenthesis in each word. For instance, pressing z (upper or lowercase), allows one to zoom
into a subportion of the x-axis of the current plot. Exceptions to this rule are the zoom In and
Out buttons, whose hotkeys are the up and down arrow keys. Also, the left and right pan
keys, < and >, are hot-keyed to the left and right arrow keys.

o Note that no Y zoom functions are currently implemented. However, they are

generally unnecessary since the Y-axis gets adjusted automatically during X-zoom
operations.

 66

 Press the m key to begin measuring a signal. Press the left mouse button repeatedly until you
are satisfied with the point selected. Then press the right mouse button to complete the
measurement.

 Press the d key to begin a difference measurement. Press the left mouse button repeatedly
until you are satisfied with the first point to be selected. Then press the right mouse button
repeatedly until you are satisfied with the second point to be selected. Press the left mouse
button to complete the measurement.

o Note that you can combine the Measure and MeasDiff commands. First, perform a
measurement command by pressing the m key as described above. Upon completion
of this command, press the d key to begin a MeasDiff command. However, instead of
pressing the left button, press the right one. The first point will remain that selected by
the Measure command, and the second can now be set where desired. Press the left
mouse button to complete the MeasDiff operation. The advantage offered by this
option is that you can zoom into a particular part of the waveform and select an initial
point using the Measure command. You can then zoom into a different portion of the
waveform, and then left-click on MeasDiff to determine the difference from the last
point to a new point in the current zoom location by using this technique.

 Press the l key (i.e. lowercase L) to display the actual sample values from the simulation (as
indicated by circles). Press the l key again to return to solid lines for the plot.

 Press the p key to return to the previous zoom value (i.e., the last achieved through use of the
Zoom X button). Note that if you just used the Zoom X function without doing any other
zoom or pan operations, you will see no change in the plot.

 67

 Press the Zoom button again on the CppSimView main window (as circled in the figure
above) to remove the zoom buttons from the plot window.

D. Advanced Plotting Methods

 There are actually five ways to perform plotting with CppSimView.

o The first is to left-click on the Plot button once an expression is entered into the bottom
command line (as demonstrated above).

o The second is to double-click on a node in the listbox (such as vin, as shown in the
figure below). The plot expression currently selected on the plot radio button (i.e.,
plotsig(…) in the figure below) will then be filled with the selected node name (i.e.,
vin in this case, so that we obtain plotsig(x,’vin’) in the command line) and the
expression is plotted. If you continue to double-click on nodes, additional subplots are
created with the new signals. To reset the number of subplots to one, press the Reset
Node List button.

o The third is to enter a plot expression directly into the command line and then press the
Enter key to produce the corresponding plot. One can also modify an existing
expression created, for instance, by the second method. The latter method often proves
convenient – simply double-click on the desired signals to produce various subplots,
and then modify the resulting command line expression to implement functions on the
various signals or to position them on the same subplot (using a comma separator
rather than a semicolon).

o The fourth is to enter a plot expression in the command line, but insert # characters into
the expression where you would like to have signal names. Once you have completed
the expression, double-click on node names and observe that the # characters are
substituted from left to right with the signal names. Once the last # character has been
filled in, a plot of the expression will be produced.

o The fifth method is to use the Back and Forward buttons to scroll through a history of
previous plotting expressions. Once a desired plotting expression is encountered, left-
click on the Plot button to replot it or perform alterations of the expression in the
command line as desired and then press the Enter key. Note that the history
commands are specific to the selected simulation file and output file (i.e., test.par and
test.tr0, for example, in the figure below). The history keeps track of the last 400

 68

commands used on a given cellview (i.e., for sd_synth_fast, as an example), and it is
shared among the various simulation and output files for that cellview.

E. Saving Plots to EPS files, FIG files, or the Windows Clipboard

 To save plots to an eps file, fig file, or to the clipboard, press either Save to .eps File, Save to

.fig File, or Save to Clipboard, respectively, in the CppSimView main window. When saving
to the clipboard, the plots can then be pasted into other Windows applications such as Word or
PowerPoint.

F. Choosing Different Plotting Functions

 As mentioned above, double clicking on signal names allows plotting to occur by filling in the

current plot expression. To choose a different plot expression, press the plot function radio
button (i.e., plotsig(…) in the figure below).

As you select different expressions in the listbox, their name will appear in the radio button label,
with the exception of non-plotting functions such as plot_title(‘name’), etc.

o The non-plotting functions can be used to label current plots. Simply select one of
these non-plotting functions, then click on the nodes radio button, and then hit Enter
to execute the function.

 69

o Some of the plotting functions, such as plot_pll_phasenoise(…), require additional
parameters beyond just signal names (such as f_low and f_high in this case). Alter the
plot expression in the command line so that these parameters are replaced with
numbers (i.e, substitute, as an example, 10e3 for f_low and 25e6 for f_high). Upon
pressing Enter, the expression in the listbox will contain the updated information. If
one then clicks on the nodes radio button and begins double-clicking on signal names,
the new expression will be appropriately executed.

G. Using the plot_pll_phasenoise(…) Plotting Function

 Continuing with the above example, click on the test.tr0 radio button, and then choose

test_noise.tr0 as shown below. If you examine the test.par file by pressing the Edit Sim File
button, you’ll notice that test_noise.tr0 stores data from time sample 200e3 to the end of the
simulation run – avoiding the first 200e3 samples allows transient effects to be removed from
the noise analysis to follow.

o Now click on the No Nodes radio button to load in the signals from the test_noise.tr0
file. As shown below, only two signals were probed in this file: TIME and noiseout.
Notice that the plot_pll_phasenoise(x,10e3,25e6,’nodes’) function now appears in the
command line. Double-clicking on noiseout causes the ‘nodes’ entry in the function
to be replaced with noiseout and for the resulting expression to be plotted. The

 70

resulting phase noise plot for the synthesizer is shown below – the left axis indicates
the value of the phase noise in dBc/Hz, and the right axis indicates spur levels in dBc.
The left and right axis display different scales due to the fact that the resolution
bandwidth is not 1 Hz.

H. Using the plot_pll_jitter(…) Plotting Function

 Now choose the CDR_Examples library in the Sue2 schematics listbox. Click on linear_cdr,

which brings up the schematic of a clock and data recovery circuit that uses a Hogge detector
for phase detection as shown below. As shown circled in the figure, the source clock and
output clock are passed through edgemeasure blocks whose outputs are edge_ref and

Double-click

select
library

 71

edge_clk, respectively. The edgemeasure blocks produce signals that are compatible with the
plot_pll_jitter(…) command now described.

 Now click on the CppSim Simulation menu item as shown above, such that the CppSim Run
Menu window appears as shown below. Click on the Compile/Run button as circled below.

o Now click on Synch button in the CppSimView window. The top of the CppSimView
window should indicate that the current cell has changed to linear_cdr. Then click on
the No Output File radio button to select test.tr0, followed by the No Nodes radio
button to load in the nodes of test.tr0. Now click on the plotsig(…) radio button and

 72

choose the plot_pll_jitter(…) function from the list box. This function will appear in
the command line – replace ‘ref_timing_node’ with ‘edge_ref’, and replace
start_edge with 30e3. Hit the Enter key to update the plot_pll_jitter(…) function in
the listbox. Now click on the nodes radio button – the CppSimView window should
appear as shown below. Double-click on edge_clk in the listbox to fill in ‘nodes’
within the plot_pll_jitter(...) function and create the plot shown below.

o As shown below, the plot_pll_jitter(…) plot displays the instantaneous phase
difference between the reference and output clock edges in unit intervals (UI) – note
that one UI corresponds to 2 radians in phase. The red line corresponds to the chosen
value of start_edge, and marks the region over which the steady-state jitter calculation
occurs. In the example below, the jitter between the reference and output clock is
calculated to be 1.3 ps (rms) for all edges to the right of the red line.

 73

More Details on Sue2

Sue2 provides a convenient graphical interface for creating and modifying CppSim systems, and is
designed to have a similar look and feel as Cadence Composer so that IC designers can easily
alternate between these tools as they iteratively perform system and circuit level design. A more
complete manual is available for Sue2 as the PDF document:
c:/CppSim/CppSimShared/Doc/sue_manual.pdf, but we will cover enough of its operation here for
users to get a good feel of this package.

Before we begin, there are two important things to keep in mind when you use Sue2:

 Always pay attention to the Help Message Window, which is to the right of the menu at the
top of the main canvas, during command operations – it provides information for bindkeys
activated while a given command is in effect

 To break out of any given command mode, hit the Esc key. This is very important to

remember – if Sue2 ever seems to lock up, hit the Esc key! (The other reason Sue2 may
appear to lock up is if an entry form was opened but not completed – in such case, be sure to
find the entry form among the Windows applications and close it to continue with Sue2).

 74

A. Using Navigation and Edit Commands

Sue2 allows its bind-keys to be changed according to user preference by editing of the file
c:/CppSim/Sue2/.suerc. That being said, the default values of common navigation and edit bind-keys
are listed here.

 Sue2 navigation commands:

o f – fit view to the window size
o z – zoom in
o Z – zoom out
o Zooming can also be accomplished by pressing the right mouse button and dragging

the mouse over the region to be zoomed into
o Panning is done by either hitting the arrow keys or by holding the Ctrl key and then

dragging the mouse while the left mouse button is held down.
o e - descend into hierarchy of selected cell.
o Ctrl+e – Return to higher level of hierarchy.

 Sue2 editing commands:

o Modify the parameters of a cell within a schematic by double-clicking on the cell. A
listbox will appear that displays the cell parameters and allows their modification.

o Move cells by pressing and holding the left mouse button on the desired cell and then
dragging the mouse.

o Select multiple items by holding the left mouse button and dragging the mouse over the
items to be selected. Additional items can be added to the current selection by holding
the shift key and then progressively clicking the left mouse button on the items of
interest.

B. Creating a New Schematic

Let us now walk through an example to see how to create a new Sue2 schematic. In this case, we will
create a pseudo-random bit stream (PRBS), pass it into a lowpass filter, and then view the results both
as time domain signals and in the form of an eye diagram.

 We will first create a new library called PRBS_Examples

o In Sue2, click on the Library Manager menu item under the Tools menu bar item as
shown in the figure below.

 75

 In the Library Manager window that appears, click on Create Library as shown below.

 Choose the new library name as PRBS_Examples and then press OK.

 76

 You should see a confirmation window in the CppSim Library Manager window as show
below. You should then Close this window.

 In Sue2, create a new schematic cell as follows:

o Select File -> New Schematic as shown below.

o A New Schematic window opens as shown below. Within the Save in: section, select
the current path to be c:/CppSim/SueLib. You should see the PRBS_Examples
directory as shown in the figure below.

 77

o Click on the PRBS_Examples folder icon, and then specify the File name as
prbs_test_example as circled below. Left-click on the Save button, as also circled
below, to complete the creation of the new schematic. You should now see the top
banner of the schematic window state that the new schematic is
C:/CppSim/SueLib/PRBS_Examples/prbs_test_example.sue. In case this point is
not clear, please view the schematic window shown as a figure on the next page in this
document to see how this information is displayed.

 In the Sue2 icons1 listbox, as shown below, select the signal_source icon and then move the
cursor into the main Sue2 schematic window. Click on the mouse to place the icon at an
appropriate place. Then select the rcfilter icon, as circled below, and again move the mouse
into the main Sue2 schematic window to place this icon to the right of signal_source cell.

 78

Finally, select the constant icon from the icons1 listbox (you must use the scroll button to see
this icon name) and then place it to the left of the signal_source cell. The main Sue2
schematic window should now appear similar to the figure displayed below.

 Save the schematic view by clicking on File->Save (or hold the Ctrl key and then press the s
key). If you now click on the top portion of the schematics listbox, as circled below, you’ll
notice that the library PRBS_Examples does not show up.

 79

 The issue of PRBS_Examples not showing up as a library in Sue2 occurred since there were
previously no cells in this library. Now that you have created a cell for this library, you can
correct this issue by exiting Sue2 and then restarting it again. After doing so, you should then
click on the top portion of the schematics listbox. Now the set of libraries will include
PRBS_Examples, which should be selected. You should then choose schematic
prbs_test_examples to re-obtain the same schematic shown above.

 Select parameter values for each of the cells in the above schematic by double-clicking on
each of them and setting them as follows:

o constant cell: consval = 0.0
o signal_source cell: stype = 3, freq = prbs_freq
o rcfilter cell: fo = 300e6

select
library

 80

 To connect the cells, we need to add wires. You enter wire-create mode by typing w in the

main Sue2 schematic window. To start a wire, left-click at the desired starting point (usually
at the terminal of a cell). Place the cursor at the end of the desired wire segment, and then left-
click to create a new segment. A wire is completed when it is connected to a cell or pin
terminal, though double-clicking the left mouse button (or single-clicking the right mouse
button) will force the end of a wire at any point in the schematic. Note that you must push the
Esc key to end wire mode. Given this information, complete wiring for the schematic as
shown below.

 To probe signals produced in the CppSim simulation of the schematic, we need to label all
signals of interest. We also should add pins to any nodes that we might want to bring up to the
next level of hierarchy.

o For this example, let us label the output node of the signal_source cell as sig. To do

so, click on name_net of the icons2 listbox (as circled below), move the mouse cursor
into the main schematic window, and then place the name_net icon on the wire
connected to terminal out of signal_source. Double-click on the name_net icon once
it is placed, and set its name to sig. The schematic figure below illustrates how the

 81

name_net icon should look within the schematic once these operations are completed.
Note that you can also use the name_net_s icon instead of name_net to name nodes –
the only difference between them is their appearance.

o Add an output pin to the schematic by clicking on output in the icons2 listbox (as
circled above), moving the mouse cursor into the main schematic window, and then
placing the pin at the output of the rightmost wire in the schematic as shown below.
Once the output pin has been placed, double-click on it to change its name to out. Be
sure to save the schematic at the completion of these operations.

C. Creating an Icon View (And Associated Parameters) For A Given Schematic

 Assuming you are currently in the schematic shown above, creation of an associated icon is

straightforward. Simply click on Window->make icon, or press its associated bindkey, K.
The resulting icon view should appear as shown below. Be sure to click on File->Save to save
this new icon view.

 82

 The newly created icon view is intended to be a template for the actual icon view desired. We

will now change its default parameter, example_param, and explain how to alter its rectangle
box.

o The two statements involving example_param are intended as a template for creating

parameters, and should either be removed or modified to reflect a parameter name of
interest. The top statement specifies how the parameter and its value will be displayed
when the icon is instantiated within a schematic. The bottom statement declares the
parameter and provides its default value.

In this case, our schematic has one parameter, prbs_freq, that we would like to
implement. To do so, double click on the two statements involved example_param
(one at a time), and replace example_param with prbs_freq. Select the default value
of prbs_freq to be 1e9, and add units of Hz to the top statement. Hit the Enter key
each time you complete the changes for a given statement. The figure below indicates
how the icon view should look upon the completion of these changes.

 83

o To add more parameters, you would simply add more statements in similar fashion to
the two you just modified. Statements can be added by either copying a current
statement (click-left on a statement of interest to select it, press c, left-click again, then
left-click once more to place the copy) and then modifying the copy, or by clicking on
Edit->add text (bindkey is t) and directly entering a new text statement.

o To change the size of the icon rectangle (i.e., the green rectangle shown in the above

icon view), double-click on the rectangle and solid boxes will appear at its corners.
Left-click on one of the corner boxes and then move the mouse – the associated corner
of the rectangle will change in accordance with the mouse movements. Release the left
mouse key to retain the current position of the given rectangle corner.

 You have several options for creating shapes for icons in Sue2:

o Create a line by pushing the l (as in line) key followed by the left mouse button, and
then double-clicking on the left mouse button (or single-clicking the right mouse
button) at a different point on the canvas. Multi-segment lines are created by single
rather than double-clicking on the left mouse button at each desired breakpoint of the
line, with a double-click of the left mouse button (or single-click of the right mouse
button) to end the line. Press the shift key to limit the drawing of line segments to
either the vertical or the horizontal plane. Once a line is created, its various line
segments can be modified by first double-clicking on the line, and then pressing and
holding the left mouse button over the given breakpoint followed by dragging of the
mouse to the new desired location.

o Create an arc by pressing the a button followed by pressing (not holding) the left
mouse button, moving the mouse until the appropriate size and shape for the arc is
achieved, and then pressing the left mouse button.

o As mentioned above, create text by pushing the t key followed by the left mouse button
at the desired location for the text. Modify text by double-clicking on it with the left
mouse button and then performing edits. Only three sizes of text are available – the
size of the given text segment may be varied while in text mode by holding the Shift
key and then pressing either the left, middle or right mouse button to select the desired
size. Also, the text can be changed to either left, middle or right justified by holding
the Ctrl key then pressing either the left, middle or right mouse button.

 Save the icon view after you have completed the desired changes. The icon is ready to add to

other schematics, and can be accessed in one of the icons listboxes by selecting
PRBS_Examples as the library for a given icons listbox.

Creating and Running New CppSim Simulations

We now walk through an example of setting up a new simulation file for a schematic, using the
eyesig(…) plot function, and making use of the alter: statement.

A. Creating a New Simulation File for a Newly Created Schematic

Let us now simulate the newly created schematic prbs_test_example. If you are currently in the icon
view of that cell, simply press k to revert back to its schematic view. Alternatively, select

 84

prbs_test_example in the schematic listbox by first selecting the PRBS_Examples library in the
listbox and then clicking on prbs_test_example. The main schematic listbox should now display the
schematic shown below. Click on the CppSim Simulation menu item as shown below.

 Click on the Edit Sim File button in the CppSim Run Menu window as shown below. An
Emacs text editor window will appear that contains a template test.par file.

 Modify the test.par file in Emacs as follows:

o num_sim_steps: 1e3

 85

o Ts: 1/10e9
o output: test
o probe: sig out
o global_param: prbs_freq=1e9
o alter: (i.e., keep this empty for now)

 Save the test.par file, and then press the Compile/Run button in the CppSim Run Menu to
run the CppSim simulation.

 Now start CppSimView by clicking on its icon. Use the appropriate commands in
CppSimView to display signals sig and out. You should see signals as shown below if all
steps were completed correctly.

B. Using the eyesig(…) Plotting Function

 In CppSimView, click on the plotsig(…) radio button and then select the eyesig(…) function

in the listbox that appears. Since the frequency of the PRBS signal source is set at 1e9, choose
a value of two periods for the eye diagram to be plotted (i.e., 2/1e9). For the starting point of
the eye diagram, choose 10 nanoseconds (i.e., 10e-9) – this choice is rather arbitrary in this
case, but the starting point should generally be chosen to remove transients from being
considered in the eye diagram generation. After making the above changes, CppSimView
should appear as below. Press Enter to record the changes in eyesig(…) within its listbox
entry.

 86

 Now click on the nodes radio button in CppSimView, and then double-click on node out. The

eye diagram shown below should appear.

C. Using the alter: Statement

 In the CppSim Run Menu window, press the Edit Sim File button if the Emacs session of

test.par is not already open. Change the alter: statement to read:

o alter: prbs_freq = 1e9 .1e9 2e9

o Note: look at the CppSim Reference Manual (i.e., cppsimdoc.pdf) to get more

information on alter: statements. It is worthwhile to do so since CppSim allows
reasonably sophisticated methods of varying parameters to be accommodated (i.e.,

 87

combinations of parameters can be generated, or parameters can be changed in step
with each other).

 Save the test.par file in Emacs, and then press the Compile/Run button in the CppSim Run

Menu window.
 Within CppSimView, click on the test.tr0 radio button and you should see that three output

files were produced: test.tr0, test.tr1, and test.tr2. You may want to try looking at the eye
diagrams for each of these different output files (be sure to change the symbol period in each
case as appropriate). Note that a much more efficient way of examining the different output
files would be to write a Matlab or Octave script to do the associated post-processing and
graphical display such that automatic loading of all the output files was performed. The
writing of such a script is beyond the scope of this document, but the user should be aware that
the limitation of CppSimView in doing such large-scale post-processing is not a limitation of
the CppSim simulation environment itself.

Creating New CppSim Primitives

CppSim primitives are defined to be cells that do not contain other cells or primitives, and therefore
must be represented as code. These cells are simply pins in their schematic view, and a corresponding
icon that may contain parameters. In this section we walk through the creation of a new CppSim
primitive in Sue2 and its corresponding code in the modules.par file.

A. Creating a Schematic View for the Primitive

 Schematic views for CppSim primitives are simply a set of input and/or output pins. For this

example, create a new schematic by clicking on File->New Schematic. Name the new
schematic triangle_waveform_source and place it into the PRBS_Examples directory. In the
schematic view, add an output pin and name it out. The schematic should now look as shown
below.

 88

B. Creating an Icon View for the Primitive

 Hit the K key (i.e., Window->make icon) to create an icon view for the above schematic. The

automatically generated icon view should look as shown below (after it has been saved).

 Modify the icon view so that it supports two parameters, amplitude and freq, as shown below.
Use the line command (l key, or Edit->add line) to create the triangle waveform placed within
the icon rectangle as shown in the figure. Once you have saved this icon view, it is now ready
to be placed within other schematics.

C. Instantiating the Primitive Within a Different Schematic

 Use the schematics listbox to bring up the prbs_test_example schematic that was created in

an earlier section of this manual. You should then see the schematic as shown below.

 89

 Replace the constant block in the above schematic with the triangle_waveform_source icon
that you just created. To do so, the first step is to select the PRBS_Examples library in the
icon1 listbox as shown below.

 90

 Now delete the constant block by left-clicking on it and then pressing the delete key. Select
the triangle_waveform_source entry from the icon1 listbox as circled above, move the
mouse cursor into the schematic, and then left-click the mouse to place the
triangle_waveform_source cell. Be sure not to try selecting the triangle_waveform_source
from the schematics listbox – you will not be able to add the icon to the schematic above, but
rather will be sent to the schematic view of triangle_waveform_source.

 Set the parameters of the triangle_waveform_source to be

o amplitude = 0.1
o freq = 100e6

 Finally, label the wire connected to the out terminal of triangle_waveform_source as jit
using the name_net symbol, and then save the schematic.

 Upon completion of the above operations, the schematic should look as shown below.

D. Running CppSim with the Primitive

select
library

 91

 Now open the CppSim Run Menu and click on the Compile/Run button, as shown in the
figure below.

 Assuming that you already created a test.par file for prbs_test_example in the previous
section of this manual, you should see the error message shown in the figure below. The error
message indicates that we need to supply code for the triangle_waveform_source module
since it is a primitive cell (i.e., it is not composed of other cells or primitives). In the following
subsection, we will provide you with basic code to implement this module without providing a
lot of comment on its details – please refer to the CppSim reference manual to gain a more
solid understanding of creating CppSim modules.

 92

E. Creating Code for the Primitive

 To begin creation of module code for the triangle_waveform_source block, double-click on

its icon in the Sue2 window as circled in the figure below. In the pop-up window that appears,
click on the Create CppSim code button. An Emacs window will appear with a template of the
CppSim module code description for the triangle_waveform_source module.

 93

 In the Emacs window that appears from the previous operation, enter text such that the module
code appears as shown below. Be sure to save the file once you are done.

module: triangle_waveform_source
description: produces a triangle waveform with amplitude of
 'amplitude' and frequency 'freq' (note that the peak-to-peak
 amplitude of the output will be twice that of 'amplitude')
parameters: double amplitude, double freq
inputs:
outputs: double out
classes:
static_variables: double phase_step, double phase
init:
phase_step = freq*Ts;
out = 0.0;
phase = 0.0;

end:
code:
 phase += phase_step;

 if (phase >= 0.5)
 phase -= 1.0;

 out = 4.0*amplitude*fabs(phase) - amplitude;

electrical_element:
functions:
custom_classes_definition:
custom_classes_code:

The above code creates a triangle wave with peak-to-peak amplitude equal to 2*amplitude,
and with frequency equal to freq Hz. This is one of many ways to create this block – the
above approach was primarily chosen for its simplicity. Note that the code within the code:
section computes the next time sample of the module outputs given the current inputs and
parameter values. Code within the init: section is run once at the beginning of each alter run,
and is used to run one-time computations and to initialize variables and outputs. The code
within the end: section is run at the very end of the alter run, and is left blank in this case since
no specific “end” operations need be done in this case. The other items at the end such as
electrical_element: and functions: are left blank since they are not used at this time (you may
also delete them from the code since they are unused).

CppSim modules can be much more complex than the above example, and can take advantage
of the CppSim classes described in the CppSim Reference Manual. The reader is encouraged
to read the CppSim Reference Manual for more information on this topic, and to examine the
code files of various modules to see examples of module code.

F. Running CppSim with the Primitive (Part II)

 94

 Before running CppSim again, first left-click on Edit Sim File in the CppSim Run Menu
window (as shown in the figure below). Make the following changes to the test.par file that
comes up in Emacs:

o Add jit to the probe: statement: probe: sig out jit
o Comment out the alter: statement: // alter: prbs_freq = 1e9 .1e9 2e9

 Now run CppSim by clicking on Compile/Run in the CppSim Run Menu window as shown
below. Notice that only one alter run is simulated since the alter: statement was commented
out.

 Now start CppSimView by clicking on its icon. You should see the window shown below.

 95

 Click on the test.tr0 radio button. Notice that, although only one alter run was simulated, there

are three output files (test.tr0, test.tr1, and test.tr2). In fact, only test.tr0 is valid – the other
two output files are left over from previous simulations which used the alter: command. To
remove test.tr1 and test.tr2, you must use standard Windows programs, such as Windows
Explorer, to go into the simulation directory (which in this case is
c:/CppSim/SimRuns/PRBS_Examples/prbs_test_example) and then delete the files. Note
that if you were to uncomment the alter: statement in the test.par file, then 3 alter runs would
be simulated and all three of the output files would be valid.

 Click on the No Nodes radio button in CppSimView, and plot the jit signal using the

plotsig(…) function. You should see the waveform shown below.

 Now use the eyesig(...) function to plot the eye diagram of the out signal. You should see the
waveform shown below. Notice that the effect of the phase variation of the source is to cause
jitter on the overall output of the system (no surprise!).

 96

Conclusion

This primer document covered basic operation of the CppSim simulator in the context of using the
Sue2 schematic editor, the CppSimView waveform viewer, and Matlab. The reader is encouraged to
also read the CppSim Reference Manual (c:/CppSim/CppSimShared/Doc/cppsimdoc.pdf), the Sue2
Manual (c:/CppSim/CppSimShared/Doc/sue2_manual.pdf), the Hspice Toolbox Manual
(c:/CppSim/CppSimShared/HspiceToolbox/document.pdf), and a paper explaining PLL
simulation techniques that are leveraged in CppSim for fast and accurate simulation of these systems
(c:/CppSim/CppSimShared/Doc/paper.pdf). Each of these documents is also accessible from the
Doc menu button of Sue2. The reader is also encouraged to look at the various Sue2 examples
provided in the CppSim package and their module code – these examples include frequency
synthesizers, CDR circuits, and DLL circuits.

