
Michael H. Perrott
March 12, 2016

Copyright © 2016 by Michael H. Perrott
All rights reserved.

Fast and Accurate System Level
Simulation of Time-Based Circuits

Using CppSim and VppSim

Modern Mixed Signal Circuit Design

 A Programmable
MEMS Oscillator
- Analog

Temperature sensor,
ADC, oscillator
sustaining circuit

- Digital
signal processing

- RF
clocking (2.5 GHz)

- MEMS
high Q resonator

 System level design is
critical

2

3

Consider a Top Down, Mixed-Signal Design Flow

System Design

Architecture

Circuit

Verification

Digital

Circuit Design

Analog

Circuit Design

Digital

Circuit

Verification

Analog

System

Verification

Circ. & Arch.

High Level

Investigation &

Analysis

System Level

Test Vectors

Schematic Creation
Code Creation

Place & Route

Extracted Layout

Creation

PVT Corners

Monte Carlo

Digital Test Vectors

Timing Checks

4

Good Execution Is Certainly A Key to Success

System Design

Architecture

Circuit

Verification

Digital

Circuit Design

Analog

Circuit Design

Digital

Circuit

Verification

Analog

System

Verification

Circ. & Arch.

Innovation

Execution

 Execution often
becomes key focus

5

New Circuit Architectures Require Innovation

System Design

Architecture

Circuit

Verification

Digital

Circuit Design

Analog

Circuit Design

Digital

Circuit

Verification

Analog

System

Verification

Circ. & Arch.

Innovation

Execution

 Key to innovation is
fast and detailed
simulation of new
architectures
- Allows evaluation

of many new ideas
- Pinpoints key

problem areas

CppSim

Schematic Based Simulation using CppSim/VppSim

 Schematic
- Provides

hierarchical
description of
system
topology

 Code blocks
- Specify

module
behavior
using
templated C++
code or
Verilog code

 Designers graphically develop system based on a
library of C++/Verilog symbols and code
- Easy to create new symbols with accompanying code

PFD
Charge
Pump

Σ−Δ

Modulator

Loop
Filter

Divider

CppSim Module

Description

Name

Inputs, Outputs

Parameters

Code

CppSim Module

Description

Name

Inputs, Outputs

Parameters

Code

1 D Q
R

1 D Q

R

Verilog Module

Description

6

1

1

2

3 4 5 6

1

2

3 4

C++ Class for

Module 1

C++ Class for

Module 2

C++ Class for

Submodule 1

C++ Class for

Module 3

C++ Class for

Submodule 2

C++ Class for

Submodule 3

C++ Class for

Submodule 4

C++ Class for

Module 4

C++ Class for

Module 5

C++ Class for

Module 6

CppSim Module

Description

Name

Inputs, Outputs

Parameters

Code

CppSim Module

Description

Name

Inputs, Outputs

Parameters

Code

Verilog Module

Description

1

7

CppSim Automates C++ Class Generation

 Modules are identified from schematic and then
- CppSim modules are converted into C++ classes
- Verilog modules are translated into C++ classes using Verilator

8

CppSim Assembles C++ Classes into Overall Sim Code

1

1

1

2

3 4 5 6

1

2

3 4

C++ Class for

Module 1

C++ Class for

Module 2

C++ Class for

Submodule 1

C++ Class for

Module 3

C++ Class for

Submodule 2

C++ Class for

Submodule 3

C++ Class for

Submodule 4

C++ Class for

Module 4

C++ Class for

Module 5

C++ Class for

Module 6

Module 1

Module 2

Module 3

Submodule 1

Submodule 2

Submodule 3

Submodule 4

Module 4

Module 5

Module 6

C++ Class for Top Module

 Block-by-block
execution of each
module at each
time step

 Hierarchical
description is
retained

Time As A Signal

 CppSim developed to accurately model time in circuits
9

out(t)ref(t) Analog
Loop Filter

Phase
Detect

VCO

Reg

D Q

ref(t)

out(t)

phase errorD Q

reset

1

1

ref(t)
error(t)

out(t)

error(t)

clk(t)

clk(t) Rload

Vsupply

Phase-Locked Loops

VCO-Based ADCs Power Conversion Circuits

VCO

1- z-1

Quantizer
First Order
Difference

Ref

Vtune Out

System-Level Modeling: A Basic Example

 Opamp is a nonlinear, transistor-level circuit
- Device level representation mandates SPICE-level simulation

Vo

Vin C1 C2

R1

R2
V1

V2

M7

M6Iref

M1 M2

M3

M8

Vo

CcRc

M4

M5

Vin+Vin-

10

Opamps Often Modeled at Transfer Function Level

 Works well for small perturbations about steady-state
- Key parameters are gain and bandwidth

Vo

Vin C1 C2

R1

R2
V1

V2

Vo/V1

f (Hz)
fdom

20log

20log(K)

fp

0dB

fo

11

A Simple Block Diagram Model of Opamp

 Approximates first order behavior of opamp

Vo

Vin C1 C2

R1

R2
V1

V2

K
1+s/ωdom

Lowpass

V+

V-

Vo

12

Inclusion of Second Order Effects

 Offset, noise, and nonlinearity of front end-differential pair
- Parasitic poles are also easy to add as additional blocks

Vo

Vin C1 C2

R1

R2
V1

V2

K
1+s/ωdom

Lowpass

V+

V-

Vo

vnoise
2voff

Nonlinearity

13

Overall Block Diagram Model

 Unilateral flow through blocks allows fast simulation
- Compute block outputs one at a time for each time step

Vo

Vin C1 C2

R1

R2
V1

V2

V- Vo 1
1+sR2C2

1
1+sR1C1

Vin
V2

K
1+s/ωdom

Lowpass

V+

V-
Vo

vnoise
2voff

Nonlinearity

V+

14

Advantages of Block-by-Block Computation

 Simple, fast computational structure
- Simply perform computation for each block one at a time

for each time step
 Extends to hierarchical design quite easily

 High level of system complexity can be handled
- Overall computational load is simply the sum of the

computation required for each block
- Contrast with SPICE whose computational load grows

exponentially with the number of elements

1 2 3 4

5

6

15

The Issue of Delay with Block-by-Block Computation

 Minimum possible delay within a feedback loop is one
sample period
- Example: Block 2 will not receive updated value from

Block 5 until next time sample
- For unity gain crossover frequency fo and delay Ts:

 Phase margin reduced by fo•Ts•360º

1 2 3 4

5

6

1 sample delay = Ts

Time step of simulation must be small compared to
bandwidth of feedback loops being simulated

16

The Issue of Block Order

 Poor ordering of blocks leads to additional delay within
feedback loops
- Issue is made worse if blocks computed concurrently

 Leads to one sample delay per block
 Block-by-block computation requires additional

algorithm to achieve minimum delay ordering

1 2 4 3

5

6

1 sample delay = Ts

additional 1 sample delay

CppSim provides automatic minimum delay ordering
and allows user specified ordering

17

Time-Based Circuits

 Traditional analog circuits utilize voltage and current
with bandwidth constrained signaling

 Time-based circuits utilize the timing of edges produced
by “digital” circuits

- Modern CMOS processes are offering faster edge rates
and lower delay through digital circuits

High bandwidth of time-based circuits
creates challenges for high speed simulation

18

A Common Time-Based Circuit

- High output frequency High sample rate
- Long time constants Long time span for transients

Large number of simulation time steps required

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

10-100 kHz

M
M+1

1-10 GHz

 Consider a fractional-N synthesizer as a prototypical
time-based circuit

19

Continuously Varying Edges Lead to Accuracy Issues

 PFD output has very high bandwidth
- Difficult to achieve high accuracy within a conventional

discrete-time or SPICE level simulator
 Non-periodic dithering of divider complicates matters

- Periodic, steady-state methods do not apply

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

M
M+1

20

Consider A Classical Constant-Time Step Method

 Directly sample the PFD output according to the
simulation sample period
- Simple, fast, readily implemented in Matlab, Verilog, C++

 Issue – quantization noise is introduced
- This noise can overwhelm the PLL noise sources we are

trying to simulate

PFD
e(t)ref(t)

e(t)
t

e[n]
n

Sample Period = Ts(Johns and Martin,
Analog Integrated Circuit Design)

21

Alternative: Event Driven Simulation

 Set simulation time samples at PFD edges
- Sample rate can be lowered to edge rate!

PFD
e(t)ref(t)

Sample Period Non-constant

e(t)
t

e[n]
n

Tk Tk+1
(Smedt et al, CICC ’98,
Demir et al, CICC ’94,
Hinz et al, Circuits and Systems ’00)

22

Issue: Non-Constant Time Step Brings Complications

 Filters and noise sources must account for varying time
step in their code implementations

 Spectra derived from mixing and other operations can
display false simulation artifacts

 Setting of time step becomes progressively complicated
if multiple time-based circuits simulated at once

PFD
e(t)ref(t)

Sample Period Non-constant

e(t)
t

e[n]
n

Tk Tk+1

23

Is there a better way?

24

Proposed Approach: Use Constant Time Step

 Straightforward CT to DT transformation of filter blocks
- Use bilinear transform or impulse invariance methods

 Overall computation framework is fast and simple
- Simulator can be based on Verilog, Matlab, C++

e(t)

t
Loop Filter

h(t)

v(t)
e(t)

t

1

0

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

Ts

25

Problem: Quantization Noise at PFD Output

 Edge locations of PFD output are quantized
- Resolution set by time step: Ts

 Reduction of Ts leads to long simulation times

e(t)

t
Loop Filter

h(t)

v(t)
e(t)

t

1

0

Ts Ts/2

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

26

Proposed Approach: View as Series of Pulses

 Area of each pulse set by edge locations
 Key observations:

- Pulses look like impulses to loop filter
- Impulses are parameterized by their area and time offset

e(t)

t
Loop Filter

h(t)

v(t)

e(t)

e(t)
t

t

1

0

1

0

Ts Ts/2

area = area = Ts/2

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

27

Proposed Area Conservation Method

 Set e[n] samples according to pulse areas
- Leads to very accurate results
- Fast computation

e(t)

t
Loop Filter

h(t)

v(t)

e(t)

e(t)
t

t

e[n]
n

1

0

1

0

1

0

Ts Ts/2

area = area = Ts/2

/Ts1/2
e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

28

Double_Interp Protocol

 Protocol sets signal samples to -1 or 1 except for
transitions
- Transition values between -1 and 1 are directly related to

the edge time location
- Can be implemented in C++, Verilog, and Matlab/Simulink

29

VCO is a Key Block for Double_Interp Encoding

 The VCO block is the key translator from a bandlimited
analog input to an edge-based waveform
 We can create routines in the VCO that calculate

the edge times of the output and encode their
values using the double_interp protocol

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

(Assume VCO output
is a square-wave
for this discussion)

30

Calculation of Transition Time Values

 Model VCO based on its phase

v[n]

VCO

out[n]

π

Φvco(t)

t

εk

out[n]

n

31

Calculation of Transition Time Values (cont.)

 Determine output transition time according to phase

v[n]

VCO

out[n]

π

Φvco(t)

t

Φ[k]

Φ[k-1]

out(t)

εk

π
out[n]

n

32

33

Calculation of Transition Time Values (cont.)

 Use first order interpolation to determine transition value

v[n]

VCO

out[n]

π

Φvco(t)

tεk Φ[k]-Φ[k-1]
π-Φ[k-1]

=

Φ[k]

Φ[k-1]

out(t)

out[n] n

εk

π

2 -1

out[n]

εk

n

Processing of Edges using Double_Interp Protocol

 Frequency divider block simply passes a sub-
sampling of edges based on the VCO output and
divide value

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

34

Processing of Edges using Double_Interp Protocol

 Phase Detector compares edges times between
reference and divided output and then outputs pulses
that preserve the time differences

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

35

Processing of Edges using Double_Interp Protocol

 Charge Pump and Loop filter operation is
straightforward to model
 Simply filter pulses from phase detector as

discussed earlier

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

36

Using the Double_Interp Protocol with Digital Gates

 Relevant timing information contained in the input
that causes the output to transition
- Determine which input causes the transition, then pass

its transition value to the output

a[n] n

b[n] n

n

a
b

out

out[n]

D
Q
Q

clk[n] n

out[n] n

n

clk
out

out

out[n]

37

Using the Double_Interp Protocol with Sine Waves

 In some systems we must deal directly with sine waves
- An explicit conversion module should be utilized

 We can convert to double_interp protocol using a similar
interpolation technique as described earlier

- See gmsk_limitamp module within GMSK_Example library
 Used in module gmsk_pll_transmitter in the same library

Conversion
Module

Ts

1

-1
osc_buf[k] double_interp

osc_out[k] double

osc_buf[k]osc_out[k]

38

Using the Double_Interp Protocol with Noise

 Standard deviation of noise samples impacted by edges
- Standard deviation scaled by sqrt of “” value for edge time

 “” value determined using double_interp protocol value 39

Var(Incp(t))

up(t)
t

t

Std(Incp[n])
n0

0

1

0

Ts 2Ts

Iu(t) Inu

C1

Incp(t)up(t)

2

1Ts 3Ts

= TsInu
2

nu
2

nu
2

1nu
2

TsInu
2=nu

nu

1nu

2nu
2 3nu

2

2nu 3nu

Example: Charge Pump Noise for XOR PD

40

pos_noise_val = pos_noise_scale*pos_noise.inp();
neg_noise_val = neg_noise_scale*neg_noise.inp();

if (pol == 1.0)
out = pos_noise_val;

else if (pol == -1.0)
out = neg_noise_val;

else if (pol >= -1.0 && pol <= 1.0)
{
interp_val = (1.0 + pol)/2.0;
out = sqrt(interp_val)*pos_noise_val + sqrt(1.0 - interp_val)*neg_noise_val;
}

else
out = 0.0;

Module: sd_synth_fast
Library: Synthesizer_Examples

Summary of Block-by-Block Computation Method

 Requires unilateral flow through blocks
 Impacts phase margin of feedback loops

- Need 1/Ts >> bandwidth of feedback loop
- Need proper ordering of blocks (automatic in CppSim)

 Constant time step simplifies simulation
- Easier block descriptions
- Frequency domain analysis become straightforward
- Time-based signals handled with double_interp protocol

1 2 3 4

5

6

41

Simulation of Switched Capacitor Circuits

 Capacitor network with switches can be modeled with
unilateral flow blocks, but many practical issues:
- Very challenging for beginners, tedious for experts
- Difficult to check correctness of model
- Difficult to investigate alternative architectures

C2

Vin(t)

Vref

Vout(t)
C1

ph1(t) ph2(t)

We need a way to automate the modeling process…
42

Automatic Unilateral Model Generation

 A linear network with switches can be represented as a
state-space model with switch dependent matrices
- An equivalent unilateral flow block is created

C2

Vin(t)

Vref

Vout(t)
C1

vin2
vin1 vout

Vref

vin2

vin1 voutVin(t)
Vout(t)

ph1(t)
ph2

ph2
ph1

ph2(t)

ph1

ph1(t)
ph2(t)

43

CppSim Approach to Linear Networks with Switches

 User specifies the CppSim model for linear elements,
switches, and diodes using electrical_element: command
- Draw the schematic and CppSim takes care of the rest!

C2

Vin(t)

Vref

Vout(t)
C1

Vref

vin2

vin1 voutVin(t)
Vout(t)

ph1(t)

ph2
ph1

ph2(t)

ph1(t)
ph2(t)

electrical_element:
capacitor ...

electrical_element:
electrical_switch ...

auto-generated
CppSim model

44

Transient Noise Analysis is Supported

 Resistors, switches, voltage/current thermal + 1/f noise
 For kT/C noise, need adequately small time step, Ts- Accuracy requires 1/Ts > 20*bandwidth of switch settling time

C2

Vin(t)

Vref

Vout(t)
C1

Vref

vin2

vin1 voutVin(t)
Vout(t)

ph1(t)

ph2
ph1

ph2(t)

ph1(t)
ph2(t)

electrical_element:
capacitor ...

electrical_element:
electrical_switch ...
 ... noise_enable = 1

auto-generated
CppSim model

45

Time Based Signals with Electrical Elements

 Constant time step of CppSim could lead to
quantization effects on sample times of clock edges
- Would result in sampling errors of input waveform

C2

Vin(t)

Vref

Vout(t)
C1

ph1(t) ph2(t)

Ts

ph1(t)

46

Leverage Double_Interp Protocol

 Electrical switches within CppSim require double_interp
signals for the control nodes
- Good timing accuracy achieved despite constant time step

C2

Vin(t)

Vref

Vout(t)
C1

ph1(t) ph2(t)

Ts

ph1(t)

1

-1
ph1[k]

47

Feeding Bool Input with Double_Interp Signal

 Conversion module automatically inserted
- -1,1 signaling converted to 0,1 signaling
- High resolution edge timing information is lost

Ts

osc1(t)

1

-1
osc1[k]

1
0

in[k]

double_interp

bool

dig_modclk_gen

bool in
double_interp osc1

48

Feeding Double_Interp Input with Bool Signal

 Automatic translation of 0,1 signaling to -1,1 signaling
- Loss of timing information causes quantization noise!

Ts

osc1(t)

1

-1
osc1[k]

1
0

buf1[k]

1

-1
ph1[k]

double_interp

bool

double_interp

dig_mod

C2

Vin(t)

Vref Vout(t)
C1

ph2

clk_gen

bool buf1bool in
double_interp osc1 double_interp ph1

49

Restoring Fine Timing Information

 Use dff or reg_double_retime (Library: CppSimModules)
- Above figure is simplified – ignores some additional delays

Ts

osc1(t)

1

-1
osc1[k]

1
0

buf1[k]

1

-1
ph1[k]

double_interp

bool

double_interp

dig_mod

C2

Vin(t)

Vref Vout(t)
C1

ph2

clk_gen

bool buf1bool in
double_interp osc1 double_interp ph1

Reg

double_interp osc2

50

Supported Electrical Elements in CppSim

capacitor inductorresistor

1:n

electrical_transformer mutual_inductors

m

l1 l2

vcvsvccs cccs ccvs ccvs_single_out

electrical_diode electrical_switch dc_voltage dc_current

2

in
2in

en

dc_current_with_noisedc_voltage_with_noise dc_voltage_with_noise_sq dc_current_with_noise_sq

en

51

CppSim Code Versus Electrical Element Modules

 Which approach is best for circuit blocks such as opamps?

C2

Vin(t)

Vref

Vout(t)
C1

ph1(t) ph2(t)

electrical_element:

rogmV1V1

vout

Cin Co

V+

V-

code:
Filter filt1(“K”,“1+1/wo*s”,...)

vout = filt1(vinp-vinm)

52

Complexity Issue with Electrical Element Modules

 State-space calculations increase as (number of nodes)2

- Large networks dramatically slow down simulation speed

C2

Vin(t)

Vref Vout(t)C1

ph1(t) ph2(t)

C4

Vref Vout2(t)C3

ph1(t) ph2(t)

electrical_element:

rogmV1V1

vout

Cin Co

V+

V-

53

Code Modules Allow De-Coupling Between Networks

 Code modules are not sensitive to loading
- Allows CppSim to automatically separate into sub-networks

C2

Vin(t)

Vref Vout(t)C1

ph1(t) ph2(t)

C4

Vref Vout2(t)C3

ph1(t) ph2(t)

code:
Filter filt1(“K”,“1+1/wo*s”,...)

vout = filt1(vinp-vinm)

V

Code modules preferred to achieve fast simulation speed
54

Impact of Hierarchy on Electrical Element Networks

 CppSim implicitly inserts unity gain voltage buffers at
all inputs and outputs of instances
- Allows hierarchical simulation structure of overall

system to be retained
- De-couples networks at instance level to discourage

creation of large state-space models

Vin(t) Vout(t)

unity gain
voltage
buffer

Instance 1 Instance 2

Linear Network Linear Network

55

Example: A Second Order RC Network

 Resulting transfer function is NOT simply the cascade
of two identical RC filters
- Actual pole locations are influenced by mutual coupling

of the two first-order RC networks

R1 R2

C1 C2

Vin(t) Vout(t)

56

Cascade of First Order RC Networks as Instances

 This would appear to be the same as cascading the
RC networks at the same level of hierarchy…

R1 R2

C1 C2

Vin(t) Vout(t)

Instance 1 Instance 2

57

Recall Unity Gain Voltage Buffer Insertion

 CppSim implicitly adds unity gain voltage buffers
- Resulting transfer function is actually the cascade of

two identical RC filters

R1 R2

C1 C2

Vin(t) Vout(t)

unity gain
voltage
buffer

Instance 1 Instance 2

How do you achieve network coupling with hierarchy?
58

Electrical Element Modules Form Coupled Networks

Vin(t) Vout(t)
electrical_element:
resistor ...
capacitor ...

Instance 1 Instance 2

electrical_element:
resistor ...
capacitor ...

R1 R2

C1 C2

CppSim allows one level of hierarchy for coupled networks
59

Voltage-Controlled Capacitance and Resistance

 Electrical elements are limited to linear components
- Combine CppSim modules with electrical elements to

create nonlinear circuits
 Key technique: use CppSim module to perturb the

behavior of the linear electrical element based on the
voltage across its terminals and the input control voltage

 Examples are provided of voltage-controlled
capacitance and resistance in CppSim (Windows/Mac)
- Library: Electrical_Examples

 Voltage-controlled capacitance: test_varcap_electrical
 Voltage-controlled resistance: test_var_res_electrical

60

Vcntrl(t) Vcntrl(t)

Summary of Analog Modeling in CppSim

 Enable straightforward modeling of linear networks with
switches (and, to a more limited extent, diodes)
- User simply creates schematic level representation
- State-space model of network automatically created

 Fast speed retained by keeping network sizes small
- De-coupled networks are automatically separated
- Instances are decoupled unless they are electrical elements

 High accuracy retained for time-based circuits
- Constant time step allows straightforward FFT analysis
- Double_interp protocol enforced for electrical switches

61

 Require unilateral flow but allow arbitrary analog
functions including nonlinearity, filtering, hysteresis, etc.

CppSim Code Modules

Electrical Element Modules

CppSim versus VppSim

 CppSim
- C++ is the simulation engine

 Verilog code translated into C++ classes using Verilator
- Best option when system simulation focuses on analog

performance with digital support
 VppSim

- Verilog is the simulation engine
 C++ blocks accessed through the Verilog PLI

- Best option when system simulation focuses on digital
verification with C++ stimulus

Constant time step approach allows seamless
connection between C++ and Verilog models

62

VppSim Example: Utilize CppSim Module in Verilog

module: leadlagfilter
parameters: double fz, double fp,

double gain
inputs: double in
outputs: double out
static_variables:
classes: Filter filt("1+1/(2*pi*fz)s",

"C3*s + C3/(2*pi*fp)*s^2",
"C3,fz,fp,Ts",1/gain,fz,fp,Ts);

init:
code:
filt.inp(in);
out = filt.out;

////// Auto-generated from CppSim module //////
module leadlagfilter(in, out);

parameter fz = 0.00000000e+00;
parameter fp = 0.00000000e+00;
parameter gain = 0.00000000e+00;
input in;
output out;

wreal in;
real in_rv;
wreal out;
real out_rv;

assign out = out_rv;

initial begin
assign in_rv = in;

end

always begin
#1
$leadlagfilter_cpp(in_rv,out_rv,fz,fp,gain);

end
endmodule

CppSim module Resulting Verilog module for VppSim

63

Digital Modeling in CppSim

Code Modules: CppSim or Synthesizable Verilog

 CppSim modules utilize bool signals
- Correspond to integer vectors whose elements are 0 or 1

 Verilog modules must be synthesizable in CppSim
- Note: full support of Verilog in VppSim

65

y<5:0>
Synthesizable
Verilog Module r<10:0>clk

a<2:0>
b<4:0>

xi10

y<5:0>
CppSim
Module r<10:0>clk

a<2:0>
b<4:0>

xi10 module: dig_mod
inputs:
bool a[2:0], bool b[4:0], bool clk
outputs:
bool y[5:0], bool r[10:0]

module dig_mod(a, b, clk, y, r);
input [2:0] a;
input [4:0] b;
input clk;
output [5:0] y;
output [10:0] r;

Getting and Setting Boolean Signal Values (CppSim)

 Bool signals: integer vectors with element values of 0 or 1
- Support functions such as get_elem(), set_elem(), etc.
- For convenience: get_decimal_value(), set_decimal_value()

 Restricted to 32-bit values
66

y<5:0>
CppSim
Module r<10:0>clk

a<2:0>
b<4:0>

xi10 module: dig_mod
inputs:
bool a[2:0], bool b[4:0], bool clk
outputs:
bool y[5:0], bool r[10:0]

a_dec = a.get_decimal_value(); // full bit range (a[2:0])
b_dec = b.get_decimal_value(3,1); // limited bit range (b[3:1])
b_bit1 = b.get_elem(1); // get b[1]

y.set_decimal_value(15); // full bit range (y[5:0] = 15)
r.set_decimal_value(21,7,2); // limited bit range (r[7:2] = 21)
r.set_elem(8,1); // set r[8] = 1

Implementing Clock Edge Based Processing

 timing_sensitivity: clk must be of type bool
 EdgeDetect: clk must be of type double_interp 67

y<5:0>
CppSim
Module r<10:0>clk

a<2:0>
b<4:0>

xi10 module: dig_mod
inputs:
bool a[2:0], bool b[4:0], bool clk
outputs:
bool y[5:0], bool r[10:0]

EdgeDetect pos_clk_edge()
EdgeDetect neg_clk_edge()

code:
if (pos_clk_edge.inp(clk))
 {

 }
if (neg_clk_edge.inp(-clk))
 {

 }

timing_sensitivity: posedge clk

code:

Use timing_sensitivity: unless you need to perform
computation during every time step

(Note: no penalty for EdgeDetect method in CppSim)
68

EdgeDetect() versus timing_sensitivity: for VppSim

////// Auto-generated from CppSim module //////
module dig_mod(a,b,clk,y,r);

always begin
#1
$dig_mod_cpp(a,b,clk,y,r);

end
endmodule

////// Auto-generated from CppSim module //////
module dig_mod(a,b,clk,y,r);

always@(posedge clk) begin
$dig_mod_cpp(a,b,clk,y,r);

end

endmodule

EdgeDetect (simplified) timing_sensitivity:

 PLI routine is called
every time step
- Dramatically slows

down VppSim!

 PLI routine is only called
on positive clk edges
- Much less impact on

simulation speed

Buses, Bundles, and Iterated Instances

 Basic conventions supported
- Iterated instance: xi1<2:0>
- Bus: a<2:0>
- Bundle: a<1>,b<1:0>

 Key rules for bused signals:
- Code modules: buses only valid for type bool

 Exception for electrical_element: modules:
 Declare as bool, but actual type becomes double

- Schematic signals: buses can be any type
69

y<2:0>
a<1>,b<1:0>

xi1<2:0>

a<2:0>

70

VppSim Example: Using Buses in CppSim Module

module: queue2
parameters: int bit_width
inputs: double_interp clk,

double rst_n,
bool in[2047:0],
int enqueue,
bool dequeue[31:0]

outputs: bool out[2047:0],
bool not_empty[31:0],
int not_full

/////////// Auto-generated from CppSim module ///////////
module queue2(clk, rst_n, in, enqueue,

dequeue, out, not_empty,
not_full);

parameter bit_width = 0;
input clk;
input rst_n;
input [2047:0] in;
input [31:0] enqueue;
input [31:0] dequeue;
output [2047:0] out;
output [31:0] not_empty;
output [31:0] not_full;

wreal clk;
real clk_rv;
wreal rst_n;
real rst_n_rv;

CppSim module Resulting Verilog module for VppSim

Summary of Digital Modeling

 Verilog or CppSim code modules are supported
- CppSim simulator: Verilog must be synthesizable code
- VppSim simulator: Verilog is fully supported

 Key constructs for CppSim modules:
- bool signal type allows bus notation
- timing_sensitivity: advantageous for VppSim simulator

 Buses, bundles, and iterated instances supported
 Care should be taken to avoid introducing timing

quantization noise when passing digital signals back
to analog
- Conversion of double_interp signals to type bool leads

to loss of high resolution timing information of edges

71

Screenshot of CppSim/VppSim (Windows Version)

Readily Interfaces with Matlab and GTKWave
72

Screenshot of CppSim/VppSim (Cadence Version)

Interfaces with Matlab,
GTKWave, and SimVision

73

Free Download at www.cppsim.com

74

Many Tutorials Available for CppSim/VppSim

 Switched Capacitor 2nd Order Delta-Sigma ADC
 Phase Locked Loops (Analog and Digital)
 VCO-based ADCs
 GMSK modulator
 Decision Feedback Equalization
 Optical-Electrical Downversion and Digitization
 OFDM Transceiver

See http://www.cppsim.com

75

Example Benchmarks for a Full Chip Simulation

 SPICE-level model
- Checking of floating gate, over-voltage,

startup of bandgap and regulators, etc.
 Spectre Turbo: 2 microseconds/day
 BDA: 8 microseconds/day

 Architectural model using CppSim
- Examination of noise and analog dynamics
 2.8 milliseconds/hour

 Verification model using VppSim
- Validation of digital functionality in the context of analog

control and hybrid digital/analog systems
 7 milliseconds/minute

Tabulated simulation times for a MEMS-based oscillator:

76

Conclusion

 CppSim is designed for high productivity and versatility
- Easy to create your own code blocks

 Use existing modules to see examples, but don’t limit
yourself to what is available

- Allows very detailed modeling of complex circuits
 You are not confined to an overly simplified model

- Invites a scripted approach to running simulations
 Excellent integration with Matlab/Octave and Python

- Runs in Windows, Mac OS X, or within Cadence
 Has been used to simulate entire ICs in Cadence

 Extensive 14 year track record of enabling new circuit
architectures with first chip success

77

