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Notation for Mean, Variance, and Correlation

 Consider random variables x and y with probability 
density functions fx(x) and fy(y) and joint probability 
function fxy(x,y)
- Expected value (mean) of x is

 Note: we will often abuse notation and denote                 
as a random variable (i.e., noise) rather than its mean

- The variance of x (assuming it has zero mean) is

- A useful statistic is

 If the above is zero, x and y are said to be uncorrelated
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Relationship Between Variance and Spectral Density

 Two-sided spectrum

- Since spectrum is symmetric

 One-sided spectrum defined over positive frequencies
- Magnitude defined as twice that of its corresponding  

two-sided spectrum
 In the next few lectures, we assume a one-sided 

spectrum for all noise analysis

Sx(f)

f
0

A

f1 f2-f2 -f1

Sx(f)

f
0

2A

f1 f2

Two-Sided Spectrum One-Sided Spectrum

3



M.H. Perrott

The Impact of Filtering on Spectral Density

 For the random signal passing through a linear, 
time-invariant system with transfer function H(f)

- We see that if x(t) is amplified by gain A, we have 
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Noise in Resistors

 Can be described in terms of either voltage or current

 k is Boltzmann’s constant

 T is temperature (in Kelvins)
- Usually assume room temperature of 27 degrees Celsius
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Noise In Inductors and Capacitors

 Ideal capacitors and inductors have no noise!

 In practice, however, they will have parasitic resistance
- Induces noise
- Parameterized by adding resistances in parallel/series 

with inductor/capacitor
 Include parasitic resistor noise sources

LC
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Noise in CMOS Transistors (Assumed in Saturation)

 Modeling of noise in transistors must include several noise 
sources
- Drain noise

 Thermal and 1/f – influenced by transistor size and bias
- Gate noise

 Induced from channel – influenced by transistor size and bias
 Caused by routing resistance to gate (including resistance of 

polysilicon gate)
 Can be made negligible with proper layout such as fingering of 

devices
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Drain Noise – Thermal  (Assume Device in Saturation) 

 Thermally agitated carriers in the 
channel cause a randomly varying 
current

-  is called excess noise factor 
 = 2/3 in long channel
 = 2 to 3 (or higher!) in short 

channel NMOS (less in PMOS)
- gdo will be discussed shortly 

ind

f

4kTγgdo

2

Δf

S D

GVGS

VD>ΔV

ind

8



M.H. Perrott

Drain Noise – 1/f  (Assume Device in Saturation)
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 Traps at channel/oxide interface 
randomly capture/release carriers

- Parameterized by Kf and n
 Provided by fab (note n ≈ 1)
 Currently: Kf of PMOS << Kf of 

NMOS due to buried channel
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Induced Gate Noise (Assume Device in Saturation)
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 Fluctuating channel potential 
couples capacitively into the gate 
terminal, causing a noise gate 
current

-  is gate noise coefficient
 Typically assumed to be 2

- Correlated to drain noise!
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Useful References on MOSFET Noise

 Thermal Noise
- B. Wang et. al., “MOSFET Thermal Noise Modeling for 

Analog Integrated Circuits”, JSSC, July 1994  
 Gate Noise
- Jung-Suk Goo, “High Frequency Noise in CMOS Low 

Noise Amplifiers”, PhD Thesis, Stanford University,  
August 2001
 http://www-tcad.stanford.edu/tcad/pubs/theses/goo.pdf

- Jung-Suk Goo et. al., “The Equivalence of van der Ziel and 
BSIM4 Models in Modeling the Induced Gate Noise of 
MOSFETS”,  IEDM 2000, 35.2.1-35.2.4 
- Todd Sepke, “Investigation of Noise Sources in Scaled 

CMOS Field-Effect Transistors”, MS Thesis, MIT, June 2002
 http://www-mtl.mit.edu/research/sodini/sodinitheses.html
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Drain-Source Conductance:  gdo

 gdo is defined as channel resistance with Vds=0
- Transistor in triode, so that 

- Equals gm for long channel devices
 Key parameters for 0.18 NMOS devices
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Plot of gm and gd versus Vgs for 0.18 NMOS Device
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Plot of gm and gd versus Idens for 0.18 NMOS Device
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Noise Sources in a CMOS Amplifier
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Remove Model Components for Simplicity

RS

RG

RD

RD

Rgpar

-gmbvsvgs

vs

rogmvgs

ID

Csb

Cgs

Cgd Cdb

inding

engpar

gg

1

RG
enG

Rdeg

enD

endeg

Vin

Vout

16



M.H. Perrott

Key Noise Sources for Noise Analysis

 Transistor drain noise

Thermal noise 1/f noise

 Transistor gate noise
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Apply Thevenin Techniques to Simplify Noise Analysis

 Assumption:  noise independent of load resistor on drain
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Calculation of Zgs

 Write KCL equations

 After much algebra:
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 Determine Vgs to find iout in terms of itest

 After much algebra:

Calculation of 
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Calculation of Output Current Noise Variance (Power)

 To find noise variance:
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Variance (i.e., Power) Calc. for Output Current Noise

 Noise variance calculation

 Define correlation coefficient c between ing and ind
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Parameterized Expression for Output Noise Variance

 Key equation from last slide

 Solve for noise ratio

 Define parameters Zgsw and d
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Small Signal Model for Noise Calculations
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Example:  Output Current Noise with Zs = Rs, Zdeg = 0

 Step 1:  Determine key noise parameters
- For 0.18 CMOS, we will assume the following

 Step 2:  calculate  and Zgsw
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- For w << 1/(RsCgs):

Calculation of Output Current Noise (continued)

 Step 3:  Plug values into the previously derived expression 

Drain Noise Multiplying Factor

Gate noise contribution
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- For w >> 1/(RsCgs):

Calculation of Output Current Noise (continued)

 Step 3:  Plug values into the previously derived expression 

Drain Noise Multiplying Factor

Gate noise contribution
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Plot of Drain Noise Multiplying Factor (0.18 NMOS)

 Conclusion: gate noise has little effect on common 
source amp when source impedance is purely resistive!
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Broadband Amplifier Design Considerations for Noise

 Drain thermal noise is the chief issue of concern 
when designing amplifiers with > 1 GHz bandwidth
- 1/f noise corner is usually less than 1 MHz
- Gate noise contribution only has influence at high 

frequencies
 Noise performance specification is usually given in 

terms of input referred voltage noise
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Narrowband Amplifier Noise Requirements

 Here we focus on a narrowband of operation
- Don’t care about noise outside that band since it will be 

filtered out
 Gate noise is a significant issue here
- Using reactive elements in the source dramatically 

impacts the influence of gate noise
 Specification usually given in terms of Noise Figure
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The Impact of Gate Noise with Zs = Rs+sLg

 Step 1:  Determine key noise parameters
- For 0.18 CMOS, again assume the following

 Step 2:  Note that  =1 , calculate Zgsw
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Evaluate Zgsw At Resonance

 Set Lg such that it resonates with Cgs at the center 
frequency (wo) of the narrow band of interest

 Calculate Zgsw at frequency wo
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 Substitute in for Zgsw

Gate noise contribution

 Gate noise contribution is a function of Q!
- Rises monotonically with Q

 Key noise expression derived earlier

The Impact of Gate Noise with Zs = Rs+sLg (Cont.)
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 Determine crossover point for Q value

- Critical Q value for crossover is primarily set by process

At What Value of Q Does Gate Noise Exceed Drain Noise?
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Calculation of the Signal Spectrum at the Output

 First calculate relationship between vin and iout

 At resonance:

 Spectral density of signal at output at resonant frequency
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 SNR (assume constant spectra, ignore noise from Rs):

 For small Q such that gate noise < drain noise
- SNRout improves dramatically as Q is increased

 For large Q such that gate noise > drain noise
- SNRout improves very little as Q is increased

Impact of Q on SNR (Ignoring Rs Noise)
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Noise Factor and Noise Figure

 Definitions

 Calculation of SNRin and SNRout
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 First calculate SNRout (must include Rs noise for this)
- Rs noise calculation (same as for Vin)

- SNRout:

 Then calculate SNRin:

Calculate Noise Factor (Part 1)
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 Noise Factor calculation:

 From previous analysis

Calculate Noise Factor (Part 2)
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 Modify denominator using expressions for Q and wt

 Resulting expression for noise factor:

- Noise factor primarily depends on Q, wo/wt, and process specs

Calculate Noise Factor (Part 3)

Noise Factor scaling coefficient
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Minimum Noise Factor

 We see that the noise factor will be minimized for 
some value of Q
- Could solve analytically by differentiating with respect 

to Q and solving for peak value (i.e. where deriv. = 0)
 In Tom Lee’s book (pp 272-277), the minimum noise 

factor for the MOS common source amplifier (i.e. no 
degeneration) is found to be:

 How do these compare?
Noise Factor scaling coefficient

Noise Factor scaling coefficient
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Plot of Minimum Noise Factor and Noise Factor Vs. Q
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Achieving Minimum Noise Factor

 For common source amplifier without degeneration
- Minimum noise factor can only be achieved at 

resonance if gate noise is uncorrelated to drain noise 
(i.e., if c = 0) – we’ll see this next lecture
- We typically must operate slightly away from resonance 

in practice to achieve minimum noise factor since c will 
be nonzero

 How do we determine the optimum source impedance 
to minimize noise figure in classical analysis?
- Next lecture!
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