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Broadband Communication System

 Example:  high speed data link on a PC board

- We’ve now studied how to analyze the transmission line 
effects and package parasitics
- What’s next?
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High Speed, Broadband Amplifiers

 The first thing that you typically do to the input signal 
is amplify it

 Function
- Boosts signal levels to acceptable values
- Provides reverse isolation

 Key performance parameters
- Gain, bandwidth, noise, linearity
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Basics of MOS Large Signal Behavior (Qualitative)
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Basics of MOS Large Signal Behavior (Quantitative)
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Analysis of Amplifier Behavior

 Typically focus on small signal behavior
- Work with a linearized model such as hybrid-
- Thevenin modeling techniques allow fast and efficient 

analysis
 To do small signal analysis:
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Vbias

ID 1) Solve for bias current Id
2) Calculate small signal
     parameters (such as gm, ro)
3) Solve for small signal response
     using transistor hybrid-π small
     signal model

Small Signal Analysis Steps
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MOS DC Small Signal Model

 Assume transistor in saturation:

 Thevenin modeling based on the above
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Capacitors For MOS Device In Saturation
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MOS AC Small Signal Model (Device in Saturation)
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Wiring Parasitics

 Capacitance
- Gate: cap from poly to substrate and metal layers
- Drain and source:  cap from metal routing path to 

substrate and other metal layers
 Resistance
- Gate:  poly gate has resistance (reduced by silicide)
- Drain and source:  some resistance in diffusion region, 

and from routing long metal lines
 Inductance
- Gate:  poly gate has negligible inductance
- Drain and source:  becoming an issue for long wires

Extract these parasitics from circuit layout 
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Frequency Performance of a CMOS Device

 Two figures of merit in common use- ft :  frequency for which current gain is unity- fmax : frequency for which power gain is unity

 Common intuition about ft- Gain, bandwidth product is conserved 

- We will see that MOS devices have an ft that shifts with 
bias
 This effect strongly impacts high speed amplifier 

topology selection

 We will focus on ft- Look at pages 70-72 of Tom Lee’s book for discussion 
on fmax
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Derivation of ft for MOS Device in Saturation

 Assumption is that input is current, output of device 
is short circuited to a supply voltage
- Note that voltage bias is required at gate

 The calculated value of ft is a function of this bias voltage
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Derivation of ft for MOS Device in Saturation
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Derivation of ft for MOS Device in Saturation
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Why is ft a Function of Voltage Bias?

 ft is a ratio of gm to gate capacitance
- gm is a function of gate bias, while gate cap is not (so long 

as device remains biased)
 First order relationship between gm and gate bias:

- The larger the gate bias, the higher the value for ft

 Alternately, ft is a function of current density

- So ft maximized at max current density (and minimum L)
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Speed of NMOS Versus PMOS Devices

 NMOS devices have much higher mobility than PMOS 
devices (in current, non-strained, bulk CMOS processes)

- Intuition:  NMOS devices provide approximately 2.5 x gm
for a given amount of capacitance and gate bias voltage
- Also: NMOS devices provide approximately 2.5 x Id for a 

given amount of capacitance and gate bias voltage
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Assumptions for High Speed Amplifier Analysis

 Assume that amplifier is loaded by an identical 
amplifier and by fixed wiring capacitance

 Intrinsic performance- Defined as the bandwidth achieved for a given gain 
when Cfixed is negligible- Amplifier approaches intrinsic performance as its device 
sizes (and current) are increased

 In practice, optimal sizing (and power) of amplifier is 
roughly where Cin+Cout = Cfixed

Amp Amp

Cfixed

CinCin

Ctot = Cout+Cin+Cfixed

Cout
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The Miller Effect

 Concerns impedances that connect from input to 
output of an amplifier

 Input impedance:

 Output impedance:

Amp
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VoutVin
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Example:  The Impact of Capacitance in Feedback

 Consider Cgd in the MOS device as Cf- Assume gain is negative

 Impact on input capacitance:

 Output impedance:

Amp
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Amplifier Example – CMOS Inverter

 Assume that we set Vbias such that the amplifier 
nominal output is such that NMOS and PMOS 
transistors are all in saturation
- Note:  this topology VERY sensitive to bias errors

Cfixed
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Transfer Function of CMOS Inverter

Low Bandwidth!
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Add Resistive Feedback

Bandwidth 
extended and
less sensitivity
to bias offset

Cfixed
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We Can Still Do Better

 We are fundamentally looking for high gm to 
capacitance ratio to get the highest bandwidth
- PMOS degrades this ratio
- Gate bias voltage is constrained

Cfixed

Ctot = Cdb1+Cdb2 + Cgs3+Cgs4 + K(Cov3+Cov4) + CRf /2 + Cfixed

M2

M1

M4

M3

Miller multiplication factor

Vbias

vin

(+Cov1+Cov2)

voutRf

23



M.H. PerrottM.H. Perrott

Take PMOS Out of the Signal Path

 Advantages- PMOS gate no longer loads the signal- NMOS device can be biased at a higher voltage
 Issue- PMOS is not an efficient current provider (Id/drain cap)

 Drain cap close in value to Cgs- Signal path is loaded by cap of Rf and drain cap of 
PMOS

CL

M2

M1

Vbias

vin

voutRf

Vbias2Ibias

CLM1

Vbias

vin

voutRf
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Shunt-Series Amplifier

 Use resistors to control the bias, gain, and 
input/output impedances
- Improves accuracy over process and temp variations

 Issues
- Degeneration of M1 lowers slew rate for large signal 

applications (such as limit amps)
- There are better high speed approaches – the advantage 

of this one is simply accuracy

Ibias

M1

Vbias
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voutRf

R1

Rs

RL

Rin Rout
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Vbias
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vout
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R1

Rs

RL
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Shunt-Series Amplifier – Analysis Snapshot

 From Chapter 8 of Tom Lee’s 
book (see pp 191-197):
- Gain

- Input resistance

- Output resistance

M1

Vbias

vin
vout

Rf

R1

Rs

RL

Rin Rout

vx

Same for Rs = RL!
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NMOS Load Amplifier

 Gain set by the relative sizing of M1 and M2

CfixedM1Vbias

vin

vout

M2

gm2

1

1

vout
vin

f

slope = 
-20 dB/dec

gm1
2πCtot

gm1

2πCtot

gm2

gm2Ctot = Cdb1+Csb2+Cgs2 + Cgs3+KCov3 + Cfixed

Miller multiplication factor(+Cov1)

M3

Vdd

Id
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Design of NMOS Load Amplifier

 Size transistors for gain and speed
- Choose minimum L for maximum speed
- Choose ratio of W1 to W2 to achieve appropriate gain

 Problem:  VT of M2 lowers the bias voltage of the next 
stage (thus lowering its achievable ft)- Severely hampers performance when amplifier is cascaded
- One person solved this issue by increasing Vdd of NMOS 

load (see Sackinger et. al., “A 3-GHz 32-dB CMOS Limiting 
Amplifier for SONET OC-48 receivers”, JSSC, Dec 2000)
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Ctot = Cdb1+Csb2+Cgs2 + Cgs3+KCov3 + Cfixed

Miller multiplication factor(+Cov1)
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Resistor Loaded Amplifier (Unsilicided Poly)

 This is the fastest non-enhanced amplifier I’ve found
- Unsilicided poly is a pretty efficient current provider 

(i..e, has a good current to capacitance ratio)
- Output swing can go all the way up to Vdd

 Allows following stage to achieve high ft- Linear settling behavior (in contrast to NMOS load)
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Implementation of Resistor Loaded Amplifier

 Typically implement using differential pairs

 Benefits
- Self-biased
- Common-mode rejection

 Negative
- More power than single-ended version

M6
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αIbias
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M3 M4
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Ibias
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The Issue of Velocity Saturation

 We classically assume that MOS current is calculated as

 Which is really

- Vdsat,l corresponds to the saturation voltage at a given 
length, which we often refer to as V

 It may be shown that

- If Vgs-VT approaches LEsat in value, then the top equation is 
no longer valid
 We say that the device is in velocity saturation
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Analytical Device Modeling in Velocity Saturation

 If L small (as in modern devices), than velocity 
saturation will impact us for even moderate values 
of Vgs-VT

- Current increases linearly with Vgs-VT!
 Transconductance in velocity saturation:

- No longer a function of Vgs!
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Example:  Current Versus Voltage for 0.18 Device
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How Do We Design the Amplifier?

 Highly inaccurate to assume square law behavior
 We will now introduce a numerical procedure based 

on the simulated gm curve of a transistor
- A look at gm assuming square law device:

- Observe that if we keep the current density (Id/W) 
constant, then gm scales directly with W
 This turns out to be true outside the square-law regime 

as well
- We can therefore relate gmof devices with different 

widths given that have the same current density
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A Numerical Design Procedure for Resistor Amp – Step 1

 Two key equations
- Set gain and swing (single-

ended)

 Equate (1) and (2) through R
M6

M1 M2

M5

αIbias

Vin+

R

Vin-

R
Vo+

Vo-

2Ibias

Ibias

Vdd

Can we relate this formula to a gm curve taken
from a device of width Wo? 
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 We now know:

 Substitute (2) into (1)

 The above expression allows us to design the resistor 
loaded amp based on the gm curve of a representative 
transistor of width Wo!

A Numerical Design Procedure for Resistor Amp – Step 2
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Example:  Design for Swing of 1 V, Gain of 1 and 2

 Assume L=0.18, use previous gm plot (Wo=1.8)
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Transconductance versus Current Density

A=2 A=1

gm(wo=1.8μ,Iden)

 For gain of 1, 
current density = 
250 A/m

 For gain of 2, 
current density = 
115 A/m 

 Note that current 
density reduced 
as gain increases!
- ft effectively 

decreased
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Example (Continued)

 Knowledge of the current density allows us to design 
the amplifier
- Recall
- Free parameters are W, Ibias, and R (L assumed to be fixed)

 Given Iden = 115 A/m (Swing = 1V, Gain = 2)
- If we choose Ibias = 300 A

 Note that we could instead choose W or R, and then 
calculate the other parameters
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How Do We Choose Ibias For High Bandwidth?

 As you increase Ibias, the size of transistors also 
increases to keep a constant current density
- The size of Cin and Cout increases relative to Cfixed

 To achieve high bandwidth, want to size the devices 
(i.e., choose the value for Ibias), such that 
- Cin+Cout roughly equal to Cfixed

Amp Amp

Cfixed

CinCin

Ctot = Cout+Cin+Cfixed

Cout
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