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Maxwell’s Equations

® General form:

dH
VX FE=—u— 1
h— (1)
dE
VxH=J+e¢c— (2)
dt
V-ell =p (3)
V-uH =0 (4)

" Assumptions for free space and transmission line propagation
= No charge buildup: p=0
= No free current: J=0

" Note: we’ll only need Equations 1 and 2



Assumptions

" Orientation and direction
= E field is in x-direction and traveling in z-direction
= Hfield is in y-direction and traveling in z-direction

= In freespace: E
X
X H
h y
y o
direction
of travel
Y4
" For transmission line (TEM mode)
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Solution

" Fields change only in time and in z-direction
= Assume complex exponential solution

E = 3E.(2,t) = 2FEoe Ik7eiwt

H=yH,(z,t) = GHoe IFzeiwt
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Solution

" Fields change only in time and in z-direction
= Assume complex exponential solution

E = 3E.(2,t) = 2FEoe Ik7eiwt

H = §Hy(2,t) = jHoe Ikl

" |mplications:

dElgj 7t . dECE' 7t .
0 _ gy, EEED o
dz dt
dH, (2.t dH, (2. t
yd(zj ) — _ijy(Za t)a yd(tzj ) — j’UJHy(Z, t)
Z

But, what is the value of k ?




Evaluate Curl Operations in Maxwell’'s Formula

B Definition
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Evaluate Curl Operations in Maxwell’'s Formula

B Definition

dE, dE dE, dE dE, dE
VXE::}E( - y)+g( - — *”>+2( Y — "3)

dy dz dz dx dzx dy
dH dH dH dH dH dH
VxH=&|————~ +@( - z)+2 -
dy dz dz dz dzx dy

" Given the previous assumptions

dE t
VXE=Yy aGiL) = —y jkEz(z,1)
dz
v x H=—z d(z0)

=T )kHy(z,t
Iz J y( )



Now Put All the Pieces Together

" Solve Maxwell’s Equation (1)

dH o o
VXE=—p—- = - JkEz(2,t) = =y pjwHy(2,t)

E t
x(2, ) — MY (intrinsic impedance)
Hy('zat) k




Now Put All the Pieces Together

" Solve Maxwell’s Equations (1) and (2)

=

=

dH
VXE = —pu— =
dt
dFb
V X H=¢¢—
dit

=

=

B t
«(2,8) _ puw (intrinsic impedance)

Hy(z,t) ok

T jkHy(z,t) = 2 ejwEs(z,t) \

ew cw [ Jw
Hy(2,t) = Ba(e,t) = ( . )Hy(z,t)

€W (,ww

w () 2 o e
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Now Put All the Pieces Together

" Solve Maxwell’s Equations (1) and (2)

dH
VXE=—p—r = -y JkEx(2,t) = —y pjwHy(z,1)
B
= o(2:8) _ pw (intrinsic impedance)
Hy(z,t) k
dE . ..
V x H= - = T jkHy(2z,t) =2 ejwEz(z,t)

= Hy(s0) = B0 = 2 (M) Hy )

=

G;U (M;U> = 1= k= w/ue

. . . . w w
= Intrinsic impedance —= po_ K H

WA/ L€ Ve
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Connecting to the Real World

" Current solution is complex
E = 7E.(2,t) = $FEoe I8t = g, eI (wi—kz)
" But the following complex solution is also valid
E = 3Fy(z,t) = 3Boe) (WI=F2)

" And adding them together is also a valid solution that
IS now real-valued

E — 55; Eo(ej(’wt—kZ) _I_ e—j(“ll)t—]{?Z))
=z 2FE,cos(wt — kz)
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Calculating Propagation Speed

" The resulting cosine wave is a function of time AND

position direction E.(z.1)
of travel t

NI AVrA
b VALY,

Er(z,t) =2 2E,cos(wt — kz)

" Consider “riding” one part of the wave

¢
—kz + wt = constant (choose 0) = z = %

" Velocity calculation

d_z_i<w_t)_9_ w |1
dt  dt\k/) k wyme | ne
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Freespace Values

® Constants

1 —9
— — X 10 F/m
T 7T 367 /

L= o =4m x 107" H/m

" Impedance

\/Ez ,/@ = 377 Ohms
€ €o

" Propagation speed

1 1 5
= = 30 x 10° cm/s
v/ HE v Ho€o
" Wavelength of 30 GHz signal
A= 1 = L = 1cCcm

VIE  f/oto

14



Voltage and Current

" Definitions: V = OE-dl (path integral)
2

I = 2 H -dl (contour integral)

I=(2w+2t)H V =aE



Parallel Plate Waveguide

" E-field and H-field are influenced by plates

v,
—o—>

M.H. Perrott
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Current and H-Field

" Assume that (AC) current is flowing

M.H. Perrott

—o—>
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Current and H-Field

" Current flowing down waveguide influences H-field
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Current and H-Field

" Flux from one plate interacts with flux from the other
plate
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Current and H-Field

" Approximate H-Field to be uniform and restricted to lie
between the plates |

—
‘\b
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Voltage and E-Field

" Approximate E-field to be uniform and restricted to lie
between the plates J

<
v,.
A
Z,
><I'I'I
—o—>

z <=
J
€ b >
- &
\ V EAAAAAAA a
T_>y + I T T T T T X
V = aF
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Back to Maxwell’'s Equations

" From previous analysis
dH

VX E= —,LLE = JkEy(z,t) = jwpuHy(z, 1)
dE . .
V X H= e = jkHy(z,t) = jweE:(z,t)

" These can be equivalently written as

ik (aBx(2,1)) = jwu% (bHy(2, 1)) =|jkV (2 t) = jwLI(z t)

JE(bH, (2, 1)) = jweg(aEx(z,t)) =ik t) = jwCV (2. t)

" Where |7 — u— | (inductance per unit length - H/m)

C = e¢—|(capacitance per unit length - F/m)

22



Wave Equation for Transmission Line (TEM)

" Key formulas

jkV(z,t) = jwLI(z,1) (1)
jkI(z,t) = jwCV(z,t) (2)

" Substitute (2) into (1)

BV (2. t) = jwl (%cvu,m) = (K2—w2LO)V (2. t) = O

= k=wv.LC

" Characteristic impedance (use Equation (1))

V(z,t)  wL  wL

L
I(z,t) k w/LC |VcC
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Connecting to the Real World

" Current solution is complex
V(z,t) = Voye IF2eiwt = v g —i(wi—kz)
" But the following solution is also valid
V(z,t) = Vel (wt—kz)
" And adding them together is also a valid solution

V = Vo(el (Wimkz) 4 omilwi=kz))
= 2V, cos(wt — kz)
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Calculating Propagation Speed

" The resulting cosine wave is a function of time AND

position direction E.(z.1)
of travel t

NI AVAA
b VARV,

V(z,t) = 2V, cos(wt — kz)

" Consider “riding” one part of the wave

¢
—kz + wt = constant (choose 0) = z = %

" Velocity calculation

do_duty_w__w__| 1
dt  dt \ k o
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Integrated Circuit Values

" Constants
€ = erep (60 =3.9,11.7,4.4 in Si0O», Si, FR4, respectively)

1= prpo (ur = 1 for the above materials)

" Impedance (geometry dependant)

\f pla/b) @ (g)
\ e(b/a) e \b
" Propagation speed (geometry Independent)

1
Il = = 30x10% cm/s
VLC \/,u(a/b)e(b/a) Ve

" Wavelength of 30 GHz signal in silicon dioxide

T 1
\ = — = 1/2 cm

vV IE /391060
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LC Network Analogy of Transmission Line (TEM)

" LC network analogy

Zin- C =

a3
O
| |
a3
O
| |
a3
°
°
[

" Calculate input impedance

7 -
Zim = sL 4 (1/sC)||Z;,, = sL 4 in

1+ Z,,sC
= Z2 —sLZ;,—L/C =0

(2t

sl 4
= din = (1 + \/1 I 32[,0)

1 sL 2
for — = d,x—|1%x ~
o< =z )

L
sv LC 5
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How are Lumped LC and Transmission Lines Different?

" |n transmission line, L and C values are infinitely
small

1
= |t is always true that [s| K —
y |%<LC
L L L L
—000——0000—e—0000——0000—
Zin ‘ C =0 C = C ooe
& & O

" For lumped LC, L and C have finite values

1
= Finite frequency range for |[s —
g y rang IMKLC

7z =L {14 /142 t 2 ¢ | Z,
in = My = want |s| < Nire or real Z,,
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Lossy Transmission Lines

® Practical transmission lines have losses Iin their
conductor and dielectric material

= We model such loss by including resistors in the LC
model

" The presence of such losses has two effects on
signals traveling through the line

= Attenuation
= Dispersion (i.e., bandwidth degradation)

" See Chapter 5 of Thomas Lee’s book for analysis
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