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Amplitude Modulation (Transmitter)

/\/\/_/\/\ Transmitter Output

Vary the amplitude of a sine wave at carrier frequency f,
according to a baseband modulation signal

" DC component of baseband modulation signal
Influences transmit signal and receiver possibilities
= DC value greater than signal amplitude shown above
= Allows simple envelope detector for receiver
= Creates spurious tone at carrier frequency (wasted power)



Impact of Zero DC Value
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" Envelope of modulated sine wave no longer
corresponds directly to the baseband signal

= Envelope instead follows the absolute value of the
baseband waveform

= Envelope detector can no longer be used for receiver

" The good news: less transmit power required for same
transmitter SNR (compared to nonzero DC value)



Accompanying Receiver (Coherent Detection)
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" Works regardless of DC value of baseband signal

" Requires receiver local oscillator to be accurately
aligned in phase and frequency to carrier sine wave



Impact of Phase Misalignment in Receiver Local Oscillator
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" Worst case is when receiver LO and carrier frequency

are phase shifted 90 degrees with respect to each other
= Desired baseband signal is not recovered



Frequency Domain View of AM Transmitter
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" Baseband signal is assumed to have a nonzero DC
component in above diagram

= Causes impulse to appear at DC in baseband signal
= Transmitter output has an impulse at the carrier frequency

* For coherent detection, does not provide key information
about information in baseband signal, and therefore is a
waste of power



Impact of Having Zero DC Value for Baseband Signal
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" Impulse in DC portion of baseband signal is now gone

= Transmitter output now is now free from having an
Impulse at the carrier frequency (for ideal
Implementation)



Frequency Domain View of AM Receiver (Coherent)
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Impact of 90 Degree Phase Misalignment
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Quadrature Modulation
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" Takes advantage of coherent receiver’'s sensitivity to
phase alignment with transmitter local oscillator

= We essentially have two orthogonal transmission
channels (I and Q) available to us

= Transmit two independent baseband signals (I and Q)
onto two sine waves in quadrature at transmitter
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Accompanying Receiver
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" Demodulate using two sine waves in quadrature at

receiver

= Must align receiver LO signals in frequency and phase to

transmitter LO signals

» Proper alignment allows | and Q signals to be recovered as

shown
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Impact of 90 Degree Phase Misalignment
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" | and Q channels are swapped at receiver if its LO
signal is 90 degrees out of phase with transmitter
= However, no information is lost!

= Can use baseband signal processing to extract 1/Q
signals despite phase offset between transmitter and
receiver
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Simplified View

Baseband Input Receiver Output
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" For discussion to follow, assume that
= Transmitter and receiver phases are aligned
= Lowpass filters in receiver are ideal

= Transmit and receive I/Q signals are the same except for
scale factor

" In reality

= RF channel adds distortion, causes fading

= Signal processing in baseband DSP used to correct
problems
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Analog Modulation
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" |/Q signals take on a continuous range of values (as

viewed in the time domain)

" Used for AM/FM radios, television (non-HDTV), and
the first cell phones

" Newer systems typically employ digital modulation
Instead




Digital Modulation
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" |/Q signals take on discrete values at discrete time
Instants corresponding to digital data

= Recelver samples I/Q channels

= Uses decision boundaries to evaluate value of data at
each time instant

" |/Q signhals may be binary or multi-bit
= Multi-bit shown above
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Advantages of Digital Modulation

"= Allows information to be “packetized”

= Can compress information in time and efficiently send
as packets through network

= In contrast, analog modulation requires “circuit-
switched” connections that are continuously available

= |nefficient use of radio channel if there is “dead time” in
information flow

" Allows error correction to be achieved

= Less sensitivity to radio channel imperfections
" Enables compression of information

= More efficient use of channel

" Supports a wide variety of information content

= Voice, text and email messages, video can all be
represented as digital bit streams
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Constellation Diagram
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" We can view I/Q values at sample instants on a two-
dimensional coordinate system

" Decision boundaries mark up regions corresponding
to different data values

" Gray coding used to minimize number of bit errors
that occur if wrong decision is made due to noise
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Impact of Noise on Constellation Diagram
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"= Sampled data values no longer land in exact same
location across all sample instants

" Decision boundaries remain fixed
" Significant noise causes bit errors to be made
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Transition Behavior Between Constellation Points
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" Constellation diagrams provide us with a snapshot of I/Q
signals at sample instants

" Transition behavior between sample points depends on
modulation scheme and transmit filter
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Choosing an Appropriate Transmit Filter

data(t) p(t) X(t)
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" Transmit filter, p(t), convolved with data symbols that are
viewed as impulses

= Example so far: p(t) is a square pulse

" Qutput spectrum of transmitter corresponds to square of
transmit filter (assuming data has white spectrum)

= Want good spectral efficiency (i.e. narrow spectrum)
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Highest Spectral Efficiency with Brick-wall Lowpass

data(t) p(t)
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" Use asinc function for transmit filter
= Corresponds to ideal lowpass in frequency domain
" |ssues
= Nonrealizable in practice
= Sampling offset causes significant intersymbol interference
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Requirement for Transmit Filter to Avoid ISl

| dlatal(t)l p(t)

" Time samples of transmit filter (spaced T, apart) must
be nonzero at only one sample time instant

= Sinc function satisfies this criterion if we have no offset
In the sample times

" |ntersymbol interference (ISI) occurs otherwise

" Example: look at result of convolving p(t) with 4
Impulses

= With zero sampling offset, x(kT,) correspond to
associated impulse areas
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Derive Nyquist Condition for Avoiding ISl (Step 1)

| dlatal(t)l p(t)

impulse train

To

" Consider multiplying p(t) by impulse train with period T,
= Resulting signal must be a single impulse in order to
avoid ISI (same argument as in previous slide)
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Derive Nyquist Condition for Avoiding ISI (Step 2)

impulse train P(f) Ty F{p(kTq)} 1 Ty

p(t) must be flat to avoid ISI
= We see this in two ways for above example
» Fourier transform of an impulse is flat

= Convolution of P(f) with impulse train in frequency is flat
24



A More Practical Transmit Filter

" Raised-cosine filter is quite popular in many applications
(P(f)

-1/:Td 0 :1/:Td
sin(nt/Ty,) cos(mat/Ty)

wt/Ty; 1 — 4052752/’13
" Transition band in frequency set by “rolloff” factor, a

T, 0 Ty

p(t) =

possible range: 0 < a <1 (typical setting: 0.3 < «a < 0.5)

» Rolloff factor = 0: P(f) becomes a brick-wall filter
» Rolloff factor = 1: P(f) looks nearly like a triangle

= Rolloff factor = 0.5: shown above .



Raised-Cosine Filter Satisfies Nyquist Condition

Nyquist Condition . Nyquist Condition
Observed in Time 5 Observed in Frequency

' P(f

1___()

N X—~ | X :\ f

v I -1/T 0 1/T

Ty 0 Tq d d
" |n time

= p(kTy) =0for all k not equal to O

" |n frequency
= Fourier transform of p(kT,) is flat

= Alternatively: Addition of shifted P(f) centered about k/T
leads to flat Fourier transform (as shown above)
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Spectral Efficiency With Raised-Cosine Filter
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" More efficient than when p(t) is a square pulse
" |ess efficient than brick-wall lowpass
= But implementation is much more practical

" Note: Raised-cosine P(f) often “split” between
transmitter and receiver
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Recelver Filter: ISI Versus Noise Performance

Raised-Cosine
Filter
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" Conflicting requirements for receiver lowpass

= Low bandwidth desirable to remove receiver noise and
to reject high frequency components of mixer output

= High bandwidth desirable to minimize ISI at receiver
output
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Split Raised-Cosine Filter Between Transmitter/Receiver

Additional
/Raised-Cosine /Raised-Cosine Lowpass
Filter Filter / Filtering
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" We know that passing data through raised-cosine
filter does not cause additional ISI to be produced

= Implement P(f) as cascade of two filters corresponding
to square root of P(f)

P(f) = /P(f)y/P(f)
= Place one in transmitter, the other in receiver

" Use additional lowpass filtering in receiver to further
reduce high frequency noise and mixer products
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Multiple Access Techniques
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The Issue of Multiple Access

" Want to allow communication between many different
users

" Freespace spectrum is a shared resource
= Must be partitioned between users

® Can partition in either time, frequency, or through

“orthogonal coding” (or nearly orthogonal coding) of
data signals
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Frequency-Division Multiple Access (FDMA)

Channel Channel Channel
1 2 N

JAWAWYAW

" Place users into different frequency channels

" Two different methods of dealing with transmit/receive of
a given user
= Frequency-division duplexing
= Time-division duplexing

(C
JJ)
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Frequency-Division Duplexing

Duplexer Antenna

TX /{TX><RX>\ | J

. Transmit Receive
Receiver [¢—1RX Band Band

Transmitter

l

" Separate frequency channels into transmit and receive
bands

" Allows simultaneous transmission and reception
= Isolation of receiver from transmitter achieved with duplexer

= Cannot communicate directly between users, only between
handsets and base station

" Advantage: isolates users

" Disadvantage: deplexer has high insertion loss (i.e.
attenuates signals passing through it)
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Time-Division Duplexing

Switch Antenna

Transmitter »| Tx ﬂ\c T

Receiver [—1RX :

switchf
control

" Use any desired frequency channel for transmitter and
receiver

® Send transmit and receive signals at different times

" Allows communication directly between users (not
necessarily desirable)

" Advantage: switch has low insertion loss relative to
duplexer

" Disadvantage: receiver more sensitive to transmitted
signals from other users

34



Time-Division Multiple Access (TDMA)

Time Slot ; Time Slot Time Slot ~ Time Slot | Time Slot

N o1 2 N o

< — >
Time Frame

" Place users into different time slots
= A given time slot repeats according to time frame period
" Often combined with FDMA

= Allows many users to occupy the same frequency
channel
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Channel Partitioning Using (Nearly) “Orthogonal Coding”

Uncorrelated Signals : Correlated Signals
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" Consider two correlation cases
= Two independent random Bernoulli sequences
= Result is a random Bernoulli sequence
= Same Bernoulli sequence
= Resultis 1 or -1, depending on relative polarity
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Code-Division Multiple Access (CDMA)

Separate Transmit Signals
Ty Transmitters . Combine
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" Assign aunique code sequence to each transmitter
" Data values are encoded in transmitter output stream by
varying the polarity of the transmitter code sequence
= Each pulse in data sequence has period T,
» |ndividual pulses represent binary data values
= Each pulse in code sequence has period T,
» |Individual pulses are called “chips”
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Receiver Selects Desired Transmitter Through Its Code

Separate Transmit Signals
Transmitters . Combine

. . | ‘(E'—x1(t) ® y1(t)>§ in Freespace
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(Desired Channel = 1)

" Receiver correlates its input with desired transmitter code
= Data from desired transmitter restored
= Data from other transmitter(s) remains randomized
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Frequency Domain View of Chip Vs Data Sequences
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" Data and chip sequences operate on different time scales
= Associated spectra have different width and height
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Frequency Domain View of CDMA
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" CDMA transmitters broaden data spectra by encoding it
onto chip sequences
" CDMA receiver correlates with desired transmitter code
= Spectra of desired channel reverts to its original width
= Spectra of undesired channel remains broad
= Can be “mostly” filtered out by lowpass
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Constant Envelope Modulation
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The Issue of Power Efficiency

Baseband Power Amp

Input Transmitter
: Baseband to RF
Modulation [ " -~ " . Output
‘ Variable-Envelope Modulation Constant-Envelope Modulation ’

------------------------------------------------------------------------------------------------

" Power amp dominates power consumption for many wireless
systems

= Linear power amps more power consuming than nonlinear ones
" Constant-envelope modulation allows nonlinear power amp
= Lower power consumption possible
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Simplified Implementation for Constant-Envelope

Baseband to RF Modulation
BaSEDANd wrerrerremmmmnnnsrammnnnnnnnnnnns Power Amp
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Constant-Envelope Modulation

----------------------------------------------

" Constant-envelope modulation limited to phase and
frequency modulation methods

® Can achieve both phase and frequency modulation with
Ideal VCO

= Use as model for analysis purposes
= Note: phase modulation nearly impossible with practical VCO
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Example Constellation Diagram for Phase Modulation

Decision
Boundaries

Decision
Boundaries

" |/Q signhals must always combine such that amplitude
remains constant

= Limits constellation points to a circle in I/Q plane
= Draw decision boundaries about different phase regions
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Transitioning Between Constellation Points

Decision ~10(1 |
Boundaries

Decision
Boundaries

" Constant-envelope requirement forces transitions to
allows occur along circle that constellation points sit on

= 1/Q filtering cannot be done independently!
= Significantly impacts output spectrum
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Modeling The |

mpact of VCO Phase Modulation

® Recall unmodu

Phase/Frequency
modulation Signal

ST

D, oq(t o out(t
f m&().é_)—“t. 2c0s(27f t+D, (1)) —>( )

lated VCO model Phase
Sout(f) ‘ Noise
Overall 1 Spurious
phase noise [ [ Noise
Py 1) f f

" Relationship between sine wave output and instantaneous

phase

out(t) = 2cos(2m fot + Pyt (t))

" |Impact of modulation
= Same as examined with VCO/PLL modeling, but now we

consider @,

(t) as sum of modulation and noise components

q)out(t) — q)fm,()d(t) + cbtn(t)
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Relationship Between Sine Wave Output and its Phase

" Key relationship (note we have dropped the factor of 2)

out(t) = cos(2n fot + P,,,q(t) + P (t))

" Using a familiar trigonometric identity

out(t) = CoS(27 fot + P,p0q(t)) COS(P iy (t))
—sin(2n fot + P,,,,4(t)) Sin(DP4, (1))

" Approximation given |®,(t)| << 1

out(t) ~ cos(2m fot

Cbmod(t))
(Dmod(t))cbtn(t)
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Relationship Between Output and Phase Spectra

" Approximation from previous slide
out(t) ~ cos(2w fot + P,,,4(t))
- Sin(27Tf0t T cbmod(t))cbtn(t)

" Autocorrelation (assume modulation signal
Independent of noise)

R{out(t)} = R{COS(27 fot + ®poa(t))}
R{Sin(QWfOt Cbmod(t))}R{cbtn(t)}

" Qutput spectral density (Fourier transform of
autocorrelation)

S()ut(f) — Soutm(f) + Soutm(f) * SCIDm(f)

= Where * represents convolution and

S()utm(f) = S{cos(2m fot+Py0q(t)) } SCDm(f) = S{Pw. (1)}
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Impact of Phase Modulation on the Output Spectrum

Phase
Noise

Phase/Frequency NH Spuri
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modulation Signal verail
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Dot s out(t
f m&()> - 2c0s(2mnf t+D (1)) —>( )
0

" Spectrum of output is distorted compared to Sg,,,4(f)
® Spurs converted to phase noise

49



1/Q Model for Phase Modulation

Soutm(f) — S{COS(QWfOt + cbmod(t))

" Applying trigonometric identity

Sout(t) = S{COS(27 fot ) COS(P04(t)) —SIN(27 fol ) SIN(Pyp,04(1)) }

" Can view as I/Q modulation

= 1/Q components are coupled and related nonlinearly to
(Dmod(t)

(1)
Somegl) [ ©0S(Pmod(t)) — /{ \ A@T Sy(f)
y
Dp0q(t) cos(2nfot)
1 Sof)  singent,t)
f

0 _ ai(t) /{ \
—>| sin(D,04(t)) > —>
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