High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers

Michael H. Perrott April 7, 2004

Copyright © 2004 by Michael H. Perrott All rights reserved.

Bandwidth Constraints for Integer-N Synthesizers

- PFD output has a periodicity of 1/T
 - **■** 1/T = reference frequency
- Loop filter must have a bandwidth << 1/T</p>
 - PFD output pulses must be filtered out and average value extracted

Closed loop PLL bandwidth often chosen to be a factor of ten lower than 1/T

Bandwidth Versus Frequency Resolution

- Frequency resolution set by reference frequency (1/T)
 - Higher resolution achieved by lowering 1/T

Increasing Resolution in Integer-N Synthesizers

- Use a reference divider to achieve lower 1/T
 - Leads to a low PLL bandwidth (< 20 kHz here)</p>

The Issue of Noise

- Lower 1/T leads to higher divide value
 - Increases PFD noise at synthesizer output

Modeling PFD Noise Multiplication

- Influence of PFD noise seen in model from Lecture 16
 - PFD spectral density multiplied by N² before influencing PLL output phase noise

High divide values high phase noise at low frequencies

Dual-Loop Frequency Synthesizer

Overall synthesizer output

$$out(t) = \cos(w_1 t) \cos(w_2 t) + \sin(w_1 t) \sin(w_2 t)$$

From trigonometry: cos(A-B) = cosAcosB+sinAsinB

$$\Rightarrow out(t) = \cos((w_1 - w_2)t)$$

Advantage #1: Avoids Large Divide Values

- Choose top synthesizer to provide coarse tuning and bottom synthesizer to provide fine tuning
 - Choose w₁ to be high in frequency
 - Set ref₁ to be high to avoid large N low resolution
 - **■** Choose w₂ to be low in frequency
 - Allows ref₂ to be low without large M high resolution

8

Advantage #2: Provides Suppression of VCO Noise

- Top VCO has much more phase noise than bottom VCO due to its much higher operating frequency
 - Suppress top VCO noise by choosing a high PLL bandwidth for top synthesizer
 - High PLL bandwidth possible since ref₁ is high

Alternate Dual-Loop Architecture

Calculation of output frequency

$$y(t) = \cos((w_1 - w_2)t)$$

$$\Rightarrow Nw_{ref_1} = w_1 - w_2$$

$$\Rightarrow out(t) = \cos((Nw_{ref_1} + w_2)t)$$

Advantage of Alternate Dual-Loop Architecture

- Issue: a practical single-sideband mixer implementation will produce a spur at frequency w₁ + w₂
- PLL bandwidth of top synthesizer can be chosen low enough to suppress the single-sideband spur
 - Negative: lower suppression of top VCO noise

Direct Digital Synthesis (DDS)

- Encode sine-wave values in a ROM
- Create sine-wave output by indexing through ROM and feeding its output to a DAC and lowpass filter
 - Speed at which you index through ROM sets frequency of output sine-wave
 - Speed of indexing is set by increment value on counter (which is easily adjustable in a digital manner)

Pros and Cons of Direct Digital Synthesis

Advantages

- Very fast adjustment of frequency
- Very high resolution can be achieved
- Highly digital approach

Disadvantages

- Difficult to achieve high frequencies
- Difficult to achieve low noise
- Power hungry and complex

Hybrid Approach

- Use DDS to create a finely adjustable reference frequency
- Use integer-N synthesizer to multiply the DDS output frequency to much higher values
- Issues
 - Noise of DDS is multiplied by N²
 - Complex and power hungry

Fractional-N Frequency Synthesizers

- Break constraint that divide value be integer
 - Dither divide value dynamically to achieve fractional values
 - Frequency resolution is now arbitrary regardless of 1/T
- Want high 1/T to allow a high PLL bandwidth

Classical Fractional-N Synthesizer Architecture

- Use an accumulator to perform dithering operation
 - Fractional input value fed into accumulator
 - Carry out bit of accumulator fed into divider

Accumulator Operation

- Carry out bit is asserted when accumulator residue reaches or surpasses its full scale value
 - Accumulator residue increments by input fractional value each clock cycle

Fractional-N Synthesizer Signals with N = 4.25

- Divide value set at N = 4 most of the time
 - Resulting frequency offset causes phase error to accumulate
 - Reset phase error by "swallowing" a VCO cycle
 - Achieved by dividing by 5 every 4 reference cycles

The Issue of Spurious Tones

- PFD error is periodic
 - Note that actual PFD waveform is series of pulses the sawtooth waveform represents pulse width values over time
- Periodic error signal creates spurious tones in synthesizer output
 - Ruins noise performance of synthesizer

The Phase Interpolation Technique

- Phase error due to fractional technique is predicted by the instantaneous residue of the accumulator
 - Cancel out phase error based on accumulator residue

The Problem With Phase Interpolation

- Gain matching between PFD error and scaled D/A output must be extremely precise
 - Any mismatch will lead to spurious tones at PLL output

Is There a Better Way?

A Better Dithering Method: Sigma-Delta Modulation

Sigma-Delta dithers in a manner such that resulting quantization noise is "shaped" to high frequencies

 $\Sigma - \Delta$

Input

Linearized Model of Sigma-Delta Modulator

- Composed of two transfer functions relating input and noise to output
 - Signal transfer function (STF)
 - Filters input (generally undesirable)
 - Noise transfer function (NTF)
 - Filters (i.e., shapes) noise that is assumed to be white

Example: Cutler Sigma-Delta Topology

- Output is quantized in a multi-level fashion
- Error signal, e[k], represents the quantization error
- Filtered version of quantization error is fed back to input
 - H(z) is typically a highpass filter whose first tap value is 1
 - i.e., $H(z) = 1 + a_1 z^{-1} + a_2 z^{-2} \cdots$
 - H(z) 1 therefore has a first tap value of 0
 - Feedback needs to have delay to be realizable

Linearized Model of Cutler Topology

- Represent quantizer block as a summing junction in which r[k] represents quantization error
 - Note:

$$e[k] = y[k] - u[k] = (u[k] + r[k]) - u[k] = r[k]$$

- It is assumed that r[k] has statistics similar to white noise
 - This is a key assumption for modeling often not true!

Calculation of Signal and Noise Transfer Functions

Calculate using Z-transform of signals in linearized model

$$Y(z) = U(z) + R(z)$$

$$= X(z) + (H(z) - 1)E(z) + R(z)$$

$$= X(z) + (H(z) - 1)R(z) + R(z)$$

$$= X(z) + H(z)R(z)$$

 $- NTF: H_n(z) = H(z)$

STF: $H_s(z) = 1$

A Common Choice for H(z)

$$H(z) = (1 - z^{-1})^m$$

$$\Rightarrow |H(e^{j2\pi fT})| = |(1 - e^{-j2\pi fT})^m|$$

Example: First Order Sigma-Delta Modulator

Choose NTF to be

$$H_n(z) = H(z) = 1 - z^{-1}$$

• Plot of output in time and frequency domains with input of (2π)

 $x[k] = 0.5 + 0.25 \sin\left(\frac{2\pi}{100}k\right)$

Example: Second Order Sigma-Delta Modulator

Choose NTF to be

$$H_n(z) = H(z) = (1 - z^{-1})^2$$

Plot of output in time and frequency domains with input of (2π)

 $x[k] = 0.5 + 0.25 \sin\left(\frac{2\pi}{100}k\right)$

Example: Third Order Sigma-Delta Modulator

Choose NTF to be

$$H_n(z) = H(z) = (1 - z^{-1})^3$$

Plot of output in time and frequency domains with input of (2π)

 $x[k] = 0.5 + 0.25 \sin\left(\frac{2\pi}{100}k\right)$

Observations

- Low order Sigma-Delta modulators do not appear to produce "shaped" noise very well
 - Reason: low order feedback does not properly "scramble" relationship between input and quantization noise
 - Quantization noise, r[k], fails to be white
- Higher order Sigma-Delta modulators provide much better noise shaping with fewer spurs
 - Reason: higher order feedback filter provides a much more complex interaction between input and quantization noise

Warning: Higher Order Modulators May Still Have Tones

- Quantization noise, r[k], is best whitened when a "sufficiently exciting" input is applied to the modulator
 - Varying input and high order helps to "scramble" interaction between input and quantization noise
- Worst input for tone generation are DC signals that are rational with a low valued denominator
 - Examples (third order modulator):

Cascaded Sigma-Delta Modulator Topologies

- Achieve higher order shaping by cascading low order sections and properly combining their outputs
- Advantage over single loop approach
 - Allows pipelining to be applied to implementation
 - High speed or low power applications benefit
- Disadvantages
 - Relies on precise matching requirements when combining outputs (not a problem for digital implementations)
 - Requires multi-bit quantizer (single loop does not)

MASH topology

- Cascade first order sections
- Combine their outputs after they have passed through digital differentiators

Calculation of STF and NTF for MASH topology (Step 1)

Individual output signals of each first order modulator

$$y_1(z) = x(z) - (1 - z^{-1})r_1(z)$$

 $y_2(z) = r_1(z) - (1 - z^{-1})r_2(z)$
 $y_3(z) = r_2(z) - (1 - z^{-1})r_3(z)$

Addition of filtered outputs

Calculation of STF and NTF for MASH topology (Step 1)

Overall modulator behavior

$$y(z) = x(z) - (1 - z^{-1})^3 r_3(z)$$

- **STF**: $H_s(z) = 1$
- NTF: $H_n(z) = (1 z^{-1})^3$

Sigma-Delta Frequency Synthesizers

- Use Sigma-Delta modulator rather than accumulator to perform dithering operation
 - Achieves much better spurious performance than classical fractional-N approach

Background: The Need for A Better PLL Model

- Classical PLL model
 - Predicts impact of PFD and VCO referred noise sources
 - Does not allow straightforward modeling of impact due to divide value variations

This is a problem when using fractional-N approach

A PLL Model Accommodating Divide Value Variations

See derivation in Perrott et. al., "A Modeling Approach for Sigma-Delta Fractional-N Frequency Synthesizers ...", JSSC, Aug 2002

Parameterized Version of New Model

Spectral Density Calculations

case (a): CT
$$\longrightarrow$$
 CT $\xrightarrow{x(t)}$ $\xrightarrow{H(f)}$ $\xrightarrow{y(t)}$ $\xrightarrow{y(t)}$ case (b): DT \longrightarrow DT $\xrightarrow{x[k]}$ $\xrightarrow{H(e^{j2\pi fT})}$ $\xrightarrow{y(t)}$ case (c): DT \longrightarrow CT $\xrightarrow{x[k]}$ $\xrightarrow{H(f)}$ $\xrightarrow{y(t)}$

- **Case (a):** $S_y(f) = |H(f)|^2 S_x(f)$
- Case (b): $S_y(e^{j2\pi fT}) = |H(e^{j2\pi fT})|^2 S_x(e^{j2\pi fT})$
- Case (c): $S_y(f) = \frac{1}{T} |H(f)|^2 S_x(e^{j2\pi fT})$

Example: Calculate Impact of Ref/Divider Jitter (Step 1)

- Assume jitter is white
 - i.e., each jitter value independent of values at other time instants
- Calculate spectra for discrete-time input and output
 - Apply case (b) calculation

$$S_{\Delta t_{jit}}(e^{j2\pi fT}) = \beta^2 \quad \Rightarrow \quad S_{\Phi_{jit}}(e^{j2\pi fT}) = \left|\frac{2\pi}{T}\right|^2 \beta^2$$

Example: Calculate Impact of Ref/Divider Jitter (Step 2)

- Compute impact on output phase noise of synthesizer
 - We now apply case (c) calculation

$$S_{\Phi_n}(f) = \frac{1}{T} |TN_{nom}G(f)|^2 S_{\Phi_{jit}}(e^{j2\pi fT})$$
$$= \frac{1}{T} |TN_{nom}G(f)|^2 \left|\frac{2\pi}{T}\right|^2 \beta^2$$

Note that G(f) = 1 at DC

Now Consider Impact of Divide Value Variations

Divider Impact For Classical Vs Fractional-N Approaches

Classical Synthesizer

Fractional-N Synthesizer

Note: 1/T block represents sampler (to go from CT to DT)

Focus on Sigma-Delta Frequency Synthesizer

- Divide value can take on fractional values
 - Virtually arbitrary resolution is possible
- PLL dynamics act like lowpass filter to remove much of the quantization noise

Quantifying the Quantization Noise Impact

- Calculate by simply attaching Sigma-Delta model
 - We see that quantization noise is integrated and then lowpass filtered before impacting PLL output

A Well Designed Sigma-Delta Synthesizer

- Order of G(f) is set to equal to the Sigma-Delta order
 - Sigma-Delta noise falls at -20 dB/dec above G(f) bandwidth
- Bandwidth of G(f) is set low enough such that synthesizer noise is dominated by intrinsic PFD and VCO noise

Impact of Increased PLL Bandwidth

- Allows more PFD noise to pass through
- Allows more Sigma-Delta noise to pass through
- Increases suppression of VCO noise

Impact of Increased Sigma-Delta Order

- PFD and VCO noise unaffected
- Sigma-Delta noise no longer attenuated by G(f) such that a -20 dB/dec slope is achieved above its bandwidth