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VCO Noise in Wireless Systems
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" VCO noise has a negative impact on system performance
= Receiver — lower sensitivity, poorer blocking performance

= Transmitter — increased spectral emissions (output spectrum
must meet a mask requirement)

" Noise is characterized in frequency domain



VCO Noise in High Speed Data Links
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" VCO noise also has a negative impact on data links
= Receiver —increases bit error rate (BER)

= Transmitter — increases jitter on data stream (transmitter
must have jitter below a specified level)

® Noise Is characterized In the time domain




Noise Sources Impacting VCO

Time-domain view Jitter
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" EXtrinsic noise

= Noise from other circuits (including PLL)
" |ntrinsic noise

= Noise due to the VCO circuitry




VCO Model for Noise Analysis

Time-domain view Jitter
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" We will focus on phase noise (and its associated jitter)
= Model as phase signal in output sine waveform

out(t) = 2cos(27 fot + Pyt (t))



Simplified Relationship Between @, , and Output

PLL dynamics EXt”.nS'C
set VCO MO s .
carrier frequency [ +  Intrinsic
(assume noiseless |, () ! noise ‘ n(t)
for now) \ ¥ '

v (t Vi (t) ' D out(t)
ol )>é ) s ZRSKV »é | 2cos(@nf t+a, (1) —

---------------------

oul(t) = 2cos(2m fot + Doy (t))
" Using a familiar trigonometric identity

oul(t) = 2cos(2m fot) COS(P 1 (t))—2siN(27 fot) SIN( Pyt (T) )

" Given that the phase noise is small
Cos(q)out(t)) ~ 1, Sin((bout(t)) ~ (Dout(t)

= out(t) = 2cos(2nfot) — 2sin(27 fot )P oyt (t)




Calculation of Output Spectral Density

oul(t) = 2 cos(2mfot) — 2sinN(27 fot) P oy (t)

® Calculate autocorrelation
R{out(t)} = R{2cos(27 fot) }+R{2sIN(27 fot) } R{Pout ()}

" Take Fourier transform to get spectrum

Sout(f) = Ssin(f) + Ssin(f) * SGDOW;

= Note that * symbol corresponds to convolution

" |n general, phase spectral density can be placed into
one of two categories
= Phase noise — @ (t) is non-periodic
= Spurious noise - @ (t) is periodic



Output Spectrum with Phase Noise

" Suppose input noise to VCO (v,(t)) is bandlimited,
non-periodic noise with spectrum S, (f)

= In practice, derive phase spectrum as

2
Scbout(f) — (%) S’Un(f)

" Resulting output spectrum
‘ Sout(f) = Sein(f) + Sgin(f) * SCDOW;
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Measurement of Phase Noise in dBc/Hz

Sout(f)

ol
So,, ()
dBc/Hz --. @

4 ne

£, f,
" Definition of L(f)
L(f) = 10109 (

= Units are dBc/Hz
® For this case

L(f) = 1010 (QS‘Dgt(f )) — 10109(Se, .(f))

Spectral density of noise)
Power of carrier

= Valid when @_(t) is small in deviation (i.e., when carrier
IS not modulated, as currently assumed)



Single-Sided Version

Sout(f)

v 1
" Sou®
dBc/Hz - A @

N

fo

= Definition of L(f) remains the same

Spectral density of noise
L(f)leIog( b y o )
Power of carrier
= Units are dBc/Hz

® [For this case

L(f) = 10109 (%222} = 10109(o,,,(1)

= S0, we can work with either one-sided or two-sided
spectral densities since L(f) is set by ratio of noise
density to carrier power

10



Output Spectrum with Spurious Noise

" Suppose input noise to VCO is

vp(t) =

d.spufr

COS(Q']TfS])uTt)
(%

— Du(t) = QWKvan(t)dt _
" Resulting output spectrum
‘ Sout(f) = Ssin(f) + Ssin(f) * S,y

dspfu,r

S| N (27Tfspfu,rt)

SpuT
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1 (1 dspur)z
“ “ % 227,
f i i f
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Measurement of Spurious Noise in dBc

Sout(f)

"""" 1 1 Aspur 2

N Vvie
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B Definition of dBc

Power of tone
101log ( )

Power of carrier

= We are assuming double sided spectra, so integrate over
positive and negative frequencies to get power

» Either single or double-sided spectra can be used in practice
" For this case

d
2( spur )2 d.
10 log Qf;f’m‘ - 20Iog( "’p“”") dBc

Spur
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Calculation of Intrinsic Phase Noise in Oscillators

Zactive Zres
Active n
N \Y;
egalive ¢ | Vouw —»| Resonator
Resistance =
Generator

Active Negative

Resistance ZLactive Zres Resonator
>
 InRn G TRt Vo =P 2Ry T C Lo

-------------------------------------------------------

" Noise sources in oscillators are put in two categories
= Noise due to tank loss
= Noise due to active negative resistance

® \We want to determine how these noise sources

Influence the phase noise of the oscillator
13



Equivalent Model for Noise Calculations

Active Negative
Zres

e N

Resistance active Resonator
f' ) | ; : \
| — 1 E + ‘ E —_— E
+ InRn G- Ry 1 = Vou Rp Inrp TC JLp:
E : : : :
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Calculate Impedance Across Ideal LC Tank Circuit

----------------

Ztank " ¢

I_> E - . i 1 ) ]’UJL
+ —/—C Lo Z, o (w) = why = P
: P é p: tank( ) j”LUCpHJ p 1 — ’szpCp
" Calculate input impedance about resonance
1
consider w = wo + Aw, where wy =
| V/LrChp
_ J(wo + Aw) Ly
Zta,nk(Aw) 1 ( Aw)2
— (wo + Aw)4Ly,CYy,
_ j(wo + Aw)Ly ~ j(wo + Aw)Ly
1 — w3LyCp — 2Aw(woLpCp) — Aw?LyCp  —2Aw(woLpChp)
=0 negligible
JwelL 7 1 w
— Zta,nk(Aw) ~ - — 11— = ( 2 )
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A Convenient Parameterization of LC Tank Impedance

----------------

Ziank : ¢ :
| | 7 1 w
T Cp % L : Ztank(Aw) ~ ( 2 )

----------------

" Actual tank has loss that is modeled with R,
= Define Q according to actual tank

1 R
wocp Q
" Parameterize ideal tank impedance in terms of Q of

actual tank

J Ry [ wo
Zt(mk(Aw) ~ _5 O (Aw)

> | Bp fo ?
= ‘thnk(Af)‘ ~ (QQAf)

16



Overall Noise Output Spectral Density

Noise Due to Active -
Negative ReS|stance Noise from Tank tank |deal Tank

------------------------------------------------

------------------------------------------------

" Assume noise from active negative resistance element
and tank are uncorrelated

,02 Z’%LR ’i2 .
oul — £ | nkin |Ztanl"(Af)’
Af Af Af o
-2 D -2
1 //
— nHip 1 ‘nFn nHip ‘ tan/"(Af) ‘2
Af NN |

= Note that the above expression represents total noise that
Impacts both amplitude and phase of oscillator output
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Parameterize Noise Output Spectral Density

Noise Due to Active -
Negative Resistance Noise from Tank tank |deal Tank

------------------------------------------------

: s : — :
P o : + : :
+ InRn : t InRp : Vout —> . == Co I—pi
5 - E ~ S 5

------------------------------------------------

" From previous slide

o= — [ 14 2 |Ztank(Af)‘

Af Af Af | Af

F(Af)
" F(Af) Is defined as

total noise in tank at frequency Af
noise in tank due to tank loss at frequency Af

F(Af) =

18



Fill in Expressions

Noise Due to Active -
Negative ReS|stance Noise from Tank tank |deal Tank

------------------------------------------------

------------------------------------------------

" Noise from tank is due to resistor R,
;2 1
nHb _ 4p7— (single-sided spectrum)
Af Ry

Z...«(Af) found previously

> Rp fO ’
|Zt(m/i:(Af)‘ ~ (QQAJC)

" Qutput noise spectral density expression (single-sided)

2QAf 2QAf

P

w2, 1 Rp fo\° 1 £, \?
£u _ air L pap (B 1o facrrcan, (2 )
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Separation into Amplitude and Phase Noise

Noise Due to Active

Negative Resistance Noise from Tank Zank  |deal Tank
: @
. L v+ | .
Inrn InRp Vout T C Ly
P |
Amplitude
Noise
Vout VOUt IA
wigiggurptign t — .. Yot
Phase
Noise

" Equipartition theorem (see Tom Lee, p 534) states that
noise impact splits evenly between amplitude and phase
for V., being a sine wave

sig
= Amplitude variations suppressed by feedback in oscillator
g!f 1 fO ’ : .
=|2ETF(Af)Ry (single-sided)
Af Iphase 20Af
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Output Phase Noise Spectrum (Leeson’s Formula)

Output Spectrum

Noise Due to Active ~ Svsiq(f) Carrier impulse
Negative Resistance Noise from Tank tank |deal Tank T area ncl)rmallized ©
pooTmenmmmnn g . T . a value of one

: i ; | 1 :
P — R  + | : : L (Af)
E InRn E E ian¢ E Vout E T- Cp % I—p E 1
M e e e e e e mmmnaa. ’ M e e e e e e mmmnaa. ’ M e e e e e mmmnaa ’ fo E
—>

Spectral density of noise\ Af
L(AF) :10|og< P y o )
Power of carrier

= All power calculations are referenced to the tank loss
resistance, R,

2
Vszg rms (A/\/§)2 — 1 Uout
Psig R R ? Snoise(Af) — R A
p p p Af
2
sig Pig  \2QAf
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Example: Active Noise Same as Tank Noise

Active Negative

Resistance

------------------

-----

Resonator

--------------------------------

------------------

-----

--------------------------------

® Noise factor for oscillator in this case is

2

P(AS) = 1+ 2in

(

2
nRp

=2
NN

" Resulting phase noise

L(Af)= 10log (

4kT

1 f,

Psig

(

20Af

))

L(Af)

-20 dB/decade

log(Af)
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The Actual Situation is Much More Complicated

ianl R — — RpZ ianZ
4 N

Tank generated Tank generated

noise AI/\A/ Vou AI\/\/\ noise

Inm1 [

Inm2
Vo

Transistor generated Transistor generated
noise

v 4 noise

" |mpact of tank generated noise easy to assess

" |mpact of transistor generated noise is complicated
= Noise from M, and M, is modulated on and off
= Noise from M, is modulated before influencing V
= Transistors have 1/f noise

" Also, transistors can degrade Q of tank
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Phase Noise of A Practical Oscillator

L(Af)

-30 dB/decade

-20 dB/decade

2FKT
)

10log ( P

' : log(Af)
Afqy2 fo

2Q
" Phase noise drops at -20 dB/decade over a wide
frequency range, but deviates from this at:
= Low frequencies — slope increases (often -30 dB/decade)

= High frequencies — slope flattens out (oscillator tank does
not filter all noise sources)

" Frequency breakpoints and magnitude scaling are not
readily predicted by the analysis approach taken so far

24



Phase Noise of A Practical Oscillator

L(Af)

-30 dB/decade

-20 dB/decade

2FKT
)

10log (=5

Sig

Af;]_/f3 f_o log(Af)
2Q
" |Leeson proposed an ad hoc modification of the phase
noise expression to capture the above noise profile

2 A
L(Af) = 10log (2]1;]?71 (1 | (21622}) ) (1 | Iilj/c{:%))
S51qQ

= Note: he assumed that F(Af) was constant over frequency

25



A More Sophisticated Analysis Method

Ideal Tank Amplitude
Ko Noise

. + i i VOUt IA
i Vou + ==C, Ly ‘ Yot

M e e mmmcmmemaas ’ Phase
Noise

" QOur concern is what happens when noise current
produces a voltage across the tank

= Such voltage deviations give rise to both amplitude and
phase noise

= Amplitude noise is suppressed through feedback (or by
amplitude limiting in following buffer stages)

= Our main concern is phase noise

" We argued that impact of noise divides equally
between amplitude and phase for sine wave outputs

= What happens when we have a non-sine wave output?

26



Modeling of Phase and Amplitude Perturbations

Ideal Tank Amplitude
"""""""" ) Noise
) + E ! i VOUt IA
I Vour ! == L, : - A Yo ot
_ |
M ecemmcmcemammas . Phase
Noise
iin (1) Phase D@ ilt)
‘ in(D) Doy(1) _
1 . | hot)) | t
I To | To
i (t) Amplitude At)
iin(t) A(t)
) —»| ha(t7) —» [\
I To t [ T, 1

® Characterize impact of current noise on amplitude and
phase through their associated impulse responses
= Phase deviations are accumulated

= Amplitude deviations are suppressed
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Impact of Noise Current is Time-Varying

Ideal Tank Amplitude
"""""""" ) Noise
| v i Vou I
lin Vout E —_ Cp Lpi ‘ V.. Tt
4 :
M e cceccceaaaa- ’ Phase
Noise
iin(®) Phase D yi(t)
‘ in() Doyl —
T4, —* heto) — t
To T1 | To T1
i (t) Amplitude At)
lin(t) A(Y)
ﬂ ﬂ t —> hA(taT) —> :
! To T To T1

" |f we vary the time at which the current impulse is
Injected, its impact on phase and amplitude changes
= Need a time-varying model

28



lllustration of Time-Varying Impact of Noise on Phase

T
—>

in(®) Lo Vou)| AP+
qmaXT'r :
: t

WO Voul] A<

=T

Q) i i Vout(t)

.
S
2

WO Vou(®) > AD

&=
! |

iin(t) Vout(t) AD <

Eqmax:!r' t ‘ 2 : Zu : 2 t

" High impact on phase when impulse occurs close to the zero
crossing of the VCO output

" Low impact on phase when impulse occurs at peak of output
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Define Impulse Sensitivity Function (ISF) — I{2xft)

T

—
iin(t) q . . Vout(t)
vpoE .
lo :
iin(t) q E E Vout(t)
max.ﬂ. , ‘
(51
i (t) . Voult)
ma>5(,tﬂ, t -
12
Iin(D) q i i Vou(t)
miax:[". E , ‘
43
iin(t) :q E Vout(t)
1 . -
S ¥

" |SF constructed by calculating phase deviations as
Impulse position Is varied
= Observe that it is periodic with same period as VCO output
30



Parameterize Phase Impulse Response in Terms of ISF

iin(t)

iin(t)

iin(t)

iin(t)

iin(t)

T

1

QmaxT:r

he(t,T)

VOUt(t)
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Examples of ISF for Different VCO Output Waveforms

Example 1 Example 2
Voult) Vout)
\Avavaval mvmwa
AV, VA A W A
T (27, 1) Lo (27, 1) ' '
Y
VvV T

" |ISF (i.e.,, T") Is approximately proportional to derivative
of VCO output waveform

= Its magnitude indicates where VCO waveform is most
sensitive to noise current into tank with respect to
creating phase noise

" |SF is periodic
" |n practice, derive it from simulation of the VCO



Phase Noise Analysis Using LTV Framework

Ih(1) — | he(t,T) F—» Pout(t)

" Computation of phase deviation for an arbitrary noise
current input

D, (t) = /_O:O hao(t, T)in(T)dr =

/too (27 foT )in(T)dT

dmax v —

" Analysis simplified if we describe ISF in terms of its
Fourier series (note' C,q here IS different than book)

C(27for) = 7 + Z cn COS(N27 for + On)
= | b, () = /t &4_ i cn COS(N27 for + 01) in(T)dT
o —Oo0 \/§ n=1 " 7 " dmax
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Block Diagram of LTV Phase Noise Expression

Input Current ISF Fourier Phase to
Normalization Series Coefficients Integrator Output Voltage

e C T o) out()
Stz bl =~ b 20052+ 0)

Umax j2mf
2cos(2nft + 64) / \
(: :) Cy
2

2cos(2(2rfy )t + 65)

-—>® >022

2cos(n2nfot + 6,)
Cn
'® " 2

" Noise from current source is mixed down from different
frequency bands and scaled according to ISF coefficients
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Phase Noise Calculation for White Noise Input (Part 1)

2
Note that n_
Af

is the single-sided
noise spectral density
of in(t)

in(®) X A
> ——> /2 —>

Qmax

2cos(2nfyt + 64)

Y B

2cos(2(2rf )t + 05)

()

2cos(3(2m)f,t + 6,)

Yoop
—»@—»

CImax

)Zﬁm

\\m

Sx(f)

:::

2

N

~

= | 2

Qmax 2Af

= Sel) AT

1]] ‘1 f- Z(qiax)zﬁt' f

_fo

-f,

_fO

aX)ZZZf
i f

0o f

0o f

Sc(f) “

0 f
Solfy A

2
1"f ‘ Z(qmax) 2;‘ ' f
3f,

0o f,
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Phase Noise Calculation for White Noise Input (Part 2)

ISF Fourier Phase to
Sa() Series Coefficients Integrator Output Voltage
1 2 2
2 ( A Co : 1 Doue(t) out(t)
Omax :2Af s > > >® > 2nf »| 2cos(2nf t+Dy (1) F—>
-fo 0 fo \
(A )E Se() i
Qmax 2Af —} %
f
-fo 0 fo
Scf)
Z(Qmax)ZAf I-Z C |c
— f 2
fO 0 fo
D C3
; — f > 2
-fo 0 fo
2
]. Co 2 C]_ 2
o) = ((2) 84D+ (2) su(h)+-+
Jiomf 2 2
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Spectral Density of Phase Signal

" From the previous slide

S, (/) = (L)Q ( () 540 + () sm(n + - )

2w f 2

" Substitute in for S,(f), Si(f), etc.

S (1) = (%)2 ((%)2 F(2) - ) > (

" Resulting expression

1\ (&
Scbout(f) — (ﬁ) (Z C’?%)

dmazx A f

1

dmar

;

Z’fL

2N f
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Output Phase Noise

Se, (M Sou)

= 4 e J
[ (1",
fo

O -

" \We now know

Sq)out(f) — :

2T f

2 2 5
> a)i(L) 2
n=0 4 \ gmax Af

L(Af)=10l0g(Se,,(Af))

" Resulting phase noise

B 1 2 [ o >\ 1 1 . E
L(Af) =10log ((QWAf) (RZ::O Cn) 4 (Qm,a,:ﬂ) Af)
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The Impact of 1/f Noise in Input Current (Part 1)

— Sx(f) 1/f noise

2
Note that ” 3 )2Af /‘
max
is the single- S|ded % ! ! - ! ! ;f
noise spectral density

of in(t) \ \\
Sa(f)
in(t)> —1 X A 1* f- (qmax) 2Af /‘\ :
Omax 1 d ﬁ — 0 'fo 0 1:o —
2cos(2nf.t + 0,) > Sg(f)
1 i
O PR f £, 0 -
2c0s(2(2nf )t + 6,) N 277 Sc(f) «
Y C 1 ‘ 1 = | 2()a '
o—>®—> : - —f f

-2f, 2f, \ f 0 fo /
f)

2cos(3(2m)f,t + 0,) Sp(

Y p 1 1, - z(qmax)ZAf
e LT e

£, 0 f,
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The Impact of 1/f Noise in Input Current (Part 2)

ISF Fourier Phase to
_ Saf) Series Coefficients Integrator Output Voltage
A Dou(t)
2(«almax) 20F /\\ & P 55 | 2c0s(2rtatr@o,(0)
f j2mf
¥ 0 f \
2( . ZE >0 B C
Qmax 2Af _> 71
: — f
-fo 0 fo
Sc()
C
2(qmax) 2Af :. > C22
— f
0 fo
Sp(f)
Z(Qmax)ZAf :-: D > Cs
— f 2
fO 0 fo
2
1 Co\ 2
So,u(£)| L= (%) sa()
P out 1/f3 ]27Tf 9 A

out(t)

40



Calculation of Output Phase Noise in 1/f3 region

" From the previous slide

S 4 () ‘ e (%)2 (%)QSA(JC)

" Assume that input current has 1/f noise with corner
frequency f,

(1N 2 (fy
SA(f) - (an:x) Af (Af>

" Corresponding output phase noise

1 2 Co\ 2
L(AT) 1/f3=10|0(_31 ((QWAf) (5> SA(f))

2 2 5
— 1010g (( 1 ) (cg)l( 1 ) i (fl/f))
2mAf 4 \ gmax Af\Af
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Calculation of 1/f3 Corner Frequency

L(AT) -30 dB/decade

(A)

-20 dB/decade

(B) ; 10l0g( 2FKT )

I:)sig

B 1 \°, n1( 1 \% 42 [fiys
(A) L(Af) 1/f3— 10log ((271'Af) (60)4(ermﬁ) Af(Af))

2 [
(B) L(Af) = 10log ((%Zf) (2_:0 cg)

(A)=(B)at: | = Afy = (cg/ cg) fis
n=0
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Impact of Oscillator Waveform on 1/f3 Phase Noise

ISF for Symmetric Waveform ISF for Asymmetric Waveform
Vout) Vout)
[\ [\ [\ [\ [\ [\,
J U ' 7 U\

T /\ e\ N |
vV V VU V V V

" Key Fourier series coefficient of ISF for 1/f3 noise is c,
= If DC value of ISF is zero, c, Is also zero
" For symmetric oscillator output waveform

= DC value of ISF is zero — no upconversion of flicker noise!
(i.e. output phase noise does not have 1/f3 region)

" For asymmetric oscillator output waveform
= DC value of ISF is nonzero — flicker noise has impact
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Issue — We Have Ignored Modulation of Current Noise

' R

Ianl
4

— R i

Tank generated

oise Al /\A/

Inm1

7

Transistor generated
noise

p2 Ian2
N

Tank generated

Vou AI N noise

Inm2

N\

Transistor generated

v 4 noise

" |n practice, transistor generated noise is modulated by
the varying bias conditions of its associated transistor

= As transistor goes from saturation to triode to cutoff, its
associated noise changes dramatically

B Can we include this issue in the LTV framework?
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Inclusion of Current Noise Modulation

iin(t) in(t) q)out(t)
— he(t,T) —>
T
(2Tt t) T =1/,
27k, ) : :
" Recall 0|/\ /\ /\ t
Cx) . t .
P, (1) = / ho(t,min(r)dr = : foo C(27 for)in(T)dT
- maxr -

" By inspection of figure

ft (27 foT ) (27 foT )isn (T)dT

dmax 4 —

" We therefore apply previous framework with ISF as

— Cbout(t) —

[ 2rfor) =T (27 for)a(27 for)
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Placement of Current Modulation for Best Phase Noise

Best Placement of Current Worst Placement of Current
Modulation for Phase Noise Modulation for Phase Noise
T =1/, T=1/,
INAA L TIALALA
0 At 0 5 1\ ¢
(27, 1) E E (27t 1) : :
LA ANSYANAN

" Phase noise expression (ignoring 1/f noise)

B 1 2 [ o >\ 1 1 s E
L(Af) = 10log ((27‘(‘Af) (RZ::O Cn) 7 (qma@) Af)

" Minimum phase noise achieved by minimizing sum of
square of Fourier series coefficients (i.e. rms value of I' )
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Colpitts Oscillator Provides Optimal Placement of a

T = 1/,

Vout(®) : :
L
: Vou() \//\\//\\// t

Vbias_| " o(2mh,t) mmp 14()

JJA A A

| [(27tf 1) ! !
bias = C, : ;
AN\ N\
- / \J \

" Currentis injected into tank at bottom portion of VCO
swing
= Current noise accompanying current has minimal
Impact on VCO output phase
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Summary of LTV Phase Noise Analysis Method

Step 1. calculate the impulse sensitivity function of
each oscillator noise source using a simulator

Step 2: calculate the noise current modulation
waveform for each oscillator noise source using a
simulator

Step 3: combine above results to obtain I'(2nf t) for
each oscillator noise source

Step 4. calculate Fourier series coefficients for each
l_‘eff(zm:ot)

Step 5: calculate spectral density of each oscillator
noise source (before modulation)

Step 6: calculate overall output phase noise using the
results from Step 4 and 5 and the phase noise
expressions derived in this lecture (or the book)
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Alternate Approach for Negative Resistance Oscillator

$Ry = Cp1 Sy L2 Cpa Roc3
C C
AI Vout vout AI
N M M, i
VS
9
Ibiasl

Vbias—l M

® Recall Leeson’s formula

DETF(AF) [ 1 fo \?
Py (QQAf)

L(Af)= 10log (

g

= Key question: how do you determine F(Af)?
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F(Af) Has Been Determined for This Topology

$Ry = Cp1 Sy

Ibiasl

Vbias—l

" Rael et. al. have come up with a closed form
expression for F(Af) for the above topology

" |In the region where phase noise falls at -20 dB/dec:

F(Af) =1

2v1piqs Bp

4

TA

|’Y§

9do, M3 Ep

(Rp — Rpl — RpQ)

50



References to Rael Work

" Phase noise analysis

= J.J. Rael and A.A. Abidi, “Physical Processes of Phase
Noise in Differential LC Oscillators”, Custom Integrated
Circuits Conference, 2000, pp 569-572

" Implementation

= Emad Hegaazi et. al., “A Filtering Technique to Lower LC
Oscillator Phase Noise”, JSSC, Dec 2001, pp 1921-1930

51



Designing for Minimum Phase Noise

291, R 4
$Ry 7= Coi Sl CF(AN) =145 vy gdo 3Ry
AN N Ve 47, (A (®) (C)
/\/\ o X,
Vv, (A) Noise from tank resistance
bias (B) Noise from M, and M,
Vias M3 .
’ _l (C) Noise from M,

" To achieve minimum phase noise, we'd like to
minimize F(Af)

" The above formulation provides insight of how to do
this

= Key observation: (C) is often quite significant
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Elimination of Component (C) in F(Af)

InM3 ]

Capacitor C; shunts
noise from M; away from
tank
= Component (C) is
eliminated!
Issue — impedance at
node V. Is very low
= Causes M; and M, to
present a low
Impedance to tank

during portions of the
VCO cycle

= Q of tank is degraded
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Use Inductor to Increase Impedance at Node V,

VS
— f
T = 1/,

lpias |

I High impedance
at frequency 2f,

Vbias—l

—Cx

Voltage at node V. Is a
rectified version of
oscillator output

= Fundamental component

IS at twice the oscillation
frequency

Place inductor between V,
and current source

= Choose value to resonate
with C; and parasitic
source capacitance at
frequency 2f,

Impedance of tank not
degraded by M, and M,

= Q preserved!
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Designing for Minimum Phase Noise — Next Part

291, R 4
F(af) =1+ 21000 4 o= o2 3Ry
TA 9

®») (B ©)

(A) Noise from tank resistance

: (B) Noise from M, and M,
LV 3 ] High impedance _
T = 1/f, f at frequency 2f, (C) Nm%om M,

|biasl /\A
Vbias—l t@mg ] OF

" Let’'s now focus on component (B)
= Depends on bias current and oscillation amplitude
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Minimization of Component (B) in F(Af)

21 h; 05 Bp
TA

(B)
out ® Recall from Lecture 11

2
A= _Ibmst
T

F(Af) =14

2vlpiasBp | 4

F(Af)=1+ —
~ (&]) W(Q/W)Ib'iast

" So, it would seem that I, has no effect!
= Not true —want to maximize A (i.e. P;,) to get best phase

noise, as seen by: X
_ 2ETF(AF) (1 fo
L(Af)= 10log ( 2 (QQAf) )

g
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Current-Limited Versus Voltage-Limited Regimes

21 h; 05 Bp
TA

(B)

« ™ Oscillation amplitude, A,
cannot be increased above
supply imposed limits

" If I, IS Increased above the

point that A saturates, then
(B) increases

F(Af) =14

. . : : 2
" Current-limited regime: amplitude given by A = —I;;,. Ry
" Voltage-limited regime: amplitude saturated

Best phase noise achieved at boundary between these regimes!
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Final Comments

" Hajimiri method useful as a numerical procedure to
determine phase noise

= Provides insights into 1/f noise upconversion and
Impact of noise current modulation

" Rael method useful for CMOS negative-resistance

topology
= Closed form solution of phase noise!

= Provides a great deal of design insight
" Another numerical method

= Spectre RF from Cadence now does areasonable job of
estimating phase noise for many oscillators

= Useful for verifying design ideas and calculations
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