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Mixer Design for Wireless Systems

 Design Issues
- Noise Figure – impacts receiver sensitivity
- Linearity (IIP3) – impacts receiver blocking performance
- Conversion gain – lowers noise impact of following stages
- Power match – want max voltage gain rather than power 

match for integrated designs 
- Power – want low power dissipation
- Isolation – want to minimize interaction between the RF, IF, 

and LO ports
- Sensitivity to process/temp variations – need to make it 

manufacturable in high volume
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Ideal Mixer Behavior

 RF spectrum converted to a lower IF center frequency
- IF stands for intermediate frequency

 If IF frequency is nonzero – heterodyne or low IF receiver
 If IF frequency is zero – homodyne receiver

 Use a filter at the IF output to remove undesired high 
frequency components

f
-fo fo

= 2cos(2πfot)

RF inRF in(f) Desired
channel

0

f
-fo fo0

1 1

Local Oscillator
Output

IF out

LO out(f)

f
-fo fo

IF out(f)

0

Δf

Δf-Δf

Undesired
component

Undesired
component

Channel
Filter

3



M.H. PerrottM.H. Perrott

The Issue of Aliasing

 When the IF frequency is nonzero, there is an image 
band for a given desired channel band
- Frequency content in image band will combine with that 

of the desired channel at the IF output
- The impact of the image interference cannot be removed 

through filtering at the IF output!
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LO Feedthrough

 LO feedthrough will occur from the LO port to IF output port 
due to parasitic capacitance, power supply coupling, etc.
- Often significant since LO output much higher than RF signal

 If large, can potentially desensitize the receiver due to the extra 
dynamic range consumed at the IF output

 If small, can generally be removed by filter at IF output
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Reverse LO Feedthrough

 Reverse LO feedthrough will occur from the LO port 
to RF input port due to parasitic capacitance, etc.
- If large, and LNA doesn’t provide adequate isolation, 

then LO energy can leak out of antenna and violate 
emission standards for radio 
- Must insure that isolate to antenna is adequate
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Self-Mixing of Reverse LO Feedthrough

 LO component in the RF input can pass back through 
the mixer and be modulated by the LO signal
- DC and 2fo component created at IF output
- Of no consequence for a heterodyne system, but can 

cause problems for homodyne systems (i.e., zero IF)
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Removal of Image Interference – Solution 1

 An image reject filter can be used before the mixer to 
prevent the image content from aliasing into the desired 
channel at the IF output

 Issue – must have a high IF frequency
- Filter bandwidth must be large enough to pass all channels
- Filter Q cannot be arbitrarily large (low IF requires high Q)
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Removal of Image Interference – Solution 2

 Mix directly down to baseband (i.e., homodyne approach)
- With an IF frequency of zero, there is no image band

 Issues – many!
- DC term of LO feedthrough can corrupt signal if time-varying
- DC offsets can swamp out dynamic range at IF output
- 1/f noise, back radiation through antenna
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Removal of Image Interference – Solution 3

 Rather than filtering out the image, we can cancel it out 
using an image rejection mixer
- Advantages

 Allows a low IF frequency to be used without requiring a 
high Q filter

 Very amenable to integration
- Disadvantage

 Level of image rejection is determined by mismatch in gain 
and phase of the top and bottom paths

 Practical architectures limited to 40-50 dB image rejection
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Image Reject Mixer Principles – Step 1
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Image Reject Mixer Principles – Step 4
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Image Reject Mixer Principles – Implementation Issues

 For all analog architecture, going to zero IF 
introduces sensitivity to 1/f noise at IF output- Can fix this problem by digitizing c(t) and d(t), and then 

performing final mixing in the digital domain
 Can generate accurate quadrature sine wave signals 

by using a frequency divider

0

2

f

IF out(f) 
(after baseband filtering)

f
-f1 f1

2cos(2πf1t)

2sin(2πf1t)

a(t)

b(t)

e(t)

g(t)

RF in IF out2cos(2πf2t)

2sin(2πf2t)

Lowpass

RF in(f) Desired
channel

Image
Interferer

0

c(t)

d(t)

Lowpass

15



M.H. PerrottM.H. Perrott

What if RF in(f) is Purely Imaginary?

 Both desired and image signals disappear! 
- Architecture is sensitive to the phase of the RF input

 Can we modify the architecture to fix this issue?
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Modification of Mixer Architecture for Imaginary RF in(f)

 Desired channel now appears given two changes- Sine and cosine demodulators are switched in second 
half of image rejection mixer- The two paths are now added rather than subtracted

 Issue – architecture now zeros out desired channel 
when RF in(f) is purely real
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Overall Mixer Architecture – Use I/Q Demodulation

 Both real and imag. parts of RF input now pass through
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Mixer Single-Sideband (SSB) Noise Figure

 Issue – broadband noise from mixer or front end filter 
will be located in both image and desired bands
- Noise from both image and desired bands will combine 

in desired channel at IF output
 Channel filter cannot remove this

- Mixers are inherently noisy!
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Mixer Double-Sideband (DSB) Noise Figure

 For zero IF, there is no image band
- Noise from positive and negative frequencies combine, but 

the signals do as well
 DSB noise figure is 3 dB lower than SSB noise figure
- DSB noise figure often quoted since it sounds better

 For either case, Noise Figure computed through simulation
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A Practical Issue – Square Wave LO Oscillator Signals

 Square waves are easier to generate than sine waves
- How do they impact the mixing operation when used as 

the LO signal?
- We will briefly review Fourier transforms (series) to 

understand this issue
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Two Important Transform Pairs

 Transform of an impulse train in time is an impulse 
train in frequency
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Decomposition of Square Wave to Simplify Analysis

 Decomposition in time
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Associated Frequency Transforms

 Decomposition in frequency
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Overall Frequency Transform of a Square Wave

 Fundamental at frequency 1/T
- Higher harmonics have lower magnitude

 If W = T/2  (i.e., 50% duty cycle)
- No even harmonics!

 If amplitude varies between 1 and -1 (rather than 1 and 0)
- No DC component
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Analysis of Using Square-Wave for LO Signal

 Each frequency component of LO signal will now mix 
with the RF input- If RF input spectrum sufficiently narrowband with respect 

to fo, then no aliasing will occur
 Desired output (mixed by the fundamental component) 

can be extracted using a filter at the IF output
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Voltage Conversion Gain

 Defined as voltage ratio of desired IF value to RF input
 Example: for an ideal mixer with RF input = Asin(2(fo + 

 f)t) and sine wave LO signal = Bcos(2fot)

 For practical mixers, value depends on mixer topology 
and LO signal (i.e., sine or square wave)
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Impact of High Voltage Conversion Gain

 Benefit of high voltage gain 
- The noise of later stages will have less of an impact

 Issues with high voltage gain
- May be accompanied by higher noise figure than could be 

achieved with lower voltage gain
- May be accompanied by nonlinearities that limit 

interference rejection (i.e., passive mixers can generally 
be made more linear than active ones)
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Impact of Nonlinearity in Mixers

 Ignoring dynamic effects, we can model mixer as 
nonlinearities around an ideal mixer
- Nonlinearity A will have the same impact as LNA 

nonlinearity (measured with IIP3)
- Nonlinearity B will change the spectrum of the LO signal 

 Causes additional mixing that must be analyzed
 Changes conversion gain somewhat

- Nonlinearity C will cause self mixing of IF output
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Primary Focus is Typically Nonlinearity in RF Input Path

 Nonlinearity B not detrimental in most cases- LO signal often a square wave anyway
 Nonlinearity C can be avoided by using a linear load 

(such as a resistor)
 Nonlinearity A can hamper rejection of interferers- Characterize with IIP3 as with LNA designs- Use two-tone test to measure (similar to LNA)
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The Issue of Balance in Mixers

 A balanced signal is defined to have a zero DC 
component

 Mixers have two signals of concern with respect to 
this issue – LO and RF signals
- Unbalanced RF input causes LO feedthrough
- Unbalanced LO signal causes RF feedthrough

 Issue – transistors require a DC offset
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Achieving a Balanced LO Signal with DC Biasing

 Combine two mixer paths with LO signal 180 degrees 
out of phase between the paths

- DC component is cancelled
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Single-Balanced Mixer

 Works by converting RF input voltage to a current, then 
switching current between each side of differential pair

 Achieves LO balance using technique on previous slide- Subtraction between paths is inherent to differential output
 LO swing should be no larger than needed to fully turn on 

and off differential pair- Square wave is best to minimize noise from M1 and M2

 Transconductor designed for high linearity
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Transconductor Implementation 1

 Apply RF signal to input of common source amp
- Transistor assumed to be in saturation
- Transconductance value is the same as that of the 

transistor
 High Vbias places device in velocity saturation
- Allows high linearity to be achieved
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Transconductor Implementation 2

 Apply RF signal to a common gate amplifier
 Transconductance value set by inverse of series 

combination of Rs and 1/gm of transistor
- Amplifier is effectively degenerated to achieve higher 

linearity
 Ibias can be set for large current density through 

device to achieve higher linearity (velocity saturation)
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Transconductor Implementation 3

 Add degeneration to common source amplifier
- Inductor better than resistor

 No DC voltage drop
 Increased impedance at high frequencies helps filter out 

undesired high frequency components
- Don’t generally resonate inductor with Cgs

 Power match usually not required for IC implementation 
due to proximity of LNA and mixer
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LO Feedthrough in Single-Balanced Mixers

 DC component of RF input causes very large LO 
feedthrough
- Can be removed by filtering, but can also be removed by 

achieving a zero DC value for RF input
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Double-Balanced Mixer

 DC values of LO and RF signals are zero (balanced)
 LO feedthrough dramatically reduced!
 But, practical transconductor needs bias current
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Achieving a Balanced RF Signal with Biasing

 Use the same trick as with LO balancing
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Double-Balanced Mixer Implementation

 Applies technique from previous slide
- Subtraction at the output achieved by cross-coupling 

the output current of each stage
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Gilbert Mixer

 Use a differential pair to achieve the transconductor 
implementation

 This is the preferred mixer implementation for most 
radio systems!
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A Highly Linear CMOS Mixer

 Transistors are alternated between the off and triode 
regions by the LO signal
- RF signal varies resistance of channel when in triode
- Large bias required on RF inputs to achieve triode operation

 High linearity achieved, but very poor noise figure
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Passive Mixers

 We can avoid the transconductor and simply use 
switches to perform the mixing operation
- No bias current required allows low power operation to 

be achieved
 You can learn more about it in Homework 4!
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Square-Law Mixer

 Achieves mixing through nonlinearity of MOS device
- Ideally square law, which leads to a multiplication term

- Undesired components must be filtered out
 Need a long channel device to get square law behavior
 Issue – no isolation between LO and RF ports 
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Alternative Implementation of Square Law Mixer

 Drives LO and RF inputs on separate parts of the 
transistor- Allows some isolation between LO and RF signals

 Issue - poorer performance compared to multiplication-
based mixers- Lots of undesired spectral components- Poorer isolation between LO and RF ports
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