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A Closer Look at Transconductance

 Assuming device is in strong inversion and in saturation:
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Unity Gain Frequency for Current Gain, ft

 Under fairly general conditions, we calculate:

 ft is a key parameter for characterizing the achievable 
gain·bandwidth product with circuits that use the device 3
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Current Density as a Key Parameter

 Current density is defined as the ratio Id/W:
- We’ll assume that current density is altered by keeping 

Id fixed such that only W varies
 Maintains constant power
 ro (i.e., 1/gds = 1/(Id)) will remain somewhat constant
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Investigating Impact of Current Density

 For simplicity, let us assume that the CMOS device 
follows the square law relationship

- This will lead to the formulations:

- These formulations are only accurate over  a narrow 
region of strong inversion (with the device in saturation)

- However, the general trends observed from the above 
expressions as a function of current density will provide 
useful insight
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Investigate the Impact of Increasing Current Density

gm decreases

ft increases

Gate overdrive increases
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Higher gm (more gain)
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Transconductance Efficiency Versus ft

gm decreases

ft increases
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Weak

10
−7

10
−6

10
−5

10
−4

10
−3

0

0.5

1

1.5
x 10

−6 Gate Overdrive versus Current Density

Vg
s−

Vt
h 

(V
ol

ts
)

10
−7

10
−6

10
−5

10
−4

10
−3

0

2

4

6

8
x 10

−3 Transconductance versus Current Density

gm
 (1

/O
hm

s)

10
−7

10
−6

10
−5

10
−4

10
−3

0

1

2

3

4
x 10

11 ft versus Current Density

ft
 (H

z)

Current Density Id/W (Amps/micron)

8

Transistor “Inversion” Operating Regions
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Key Insights Related to Current Density

 Current density sets the device operating mode
- Weak inversion (subthreshold):  highest gm efficiency

 Achieves highest gm for a given amount of current, Id- Strong inversion:  highest ft

 Achieves highest speed for a given amount of current, Id- Moderate inversion:  compromise between the two
 Often the best choice for circuits that do not demand the 

highest speed but cannot afford the low speed of weak 
inversion (subthreshold operation)

 Key issue:  validity of square law current assumption

- The above is only accurate over a narrow range of strong 
inversion (i.e., the previous plots are inaccurate)
 General observations above are still true, though
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A Proper Model for Subthreshold Operation

 Drain current:

- Where:

- Note:  channel length modulation, i.e., , is ignored here
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Saturation Region for Subthreshold Operation

 Saturation occurs at roughly Vds > 100 mV
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Transconductance in Subthreshold Region

 Assuming device is in subthreshold and in saturation:
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Comparison of Strong and Weak Inversion for gm

 Assumption:  Id is constant with only W varying
 Strong inversion formulation predicts ever increasing 

gm with reduced overdrive voltage

- Reduced current density leads to reduced overdrive 
voltage and therefore higher gm

 Weak inversion formulation predicts that gm will hit a 
maximum value as current density is reduced

- Note that the area of the device no longer influences gm
when operating in weak inversion (i.e., subthreshold)
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Hybrid- Model in Subthreshold Region (In Saturation)

 Looks the same in form as for strong inversion, but 
different expressions for the various parameters

- We can use the very same Thevenin modeling 
approach as in strong inversion
 We just need to calculate gm and gmb differently
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Noise for Subthreshold Operation (In Saturation)

i2nd = 4kTγgdso∆f +
Kf

f
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 Recall transistor drain noise in strong inversion:

 In weak inversion (i.e., subthreshold):
Thermal noise 1/f noise

i2nd = 2kTngm∆f +
Kf

f

g2m
WLC2ox

∆f

Thermal noise 1/f noise
15



M.H. Perrott

Strong Inversion Versus Weak Inversion

 Strong inversion (Vgs > VTH)
- Poor gm efficiency (i.e., gm/Id is low) but fast speed
- Need Vds > (Vgs – VTH) = V to be in saturation
- Key device parameters are calculated as:

 Weak inversion (Vgs < VTH)
- Good gm efficiency (i.e., gm/Id is high) but slow speed
- Need Vds > 100mV to be in saturation
- Key device parameters are calculated as:

 Moderate inversion:  compromise between the two

16

gm ≈
2Id

(Vgs − VTH)
gmb ≈

γgm

2
q
2|ΦF |+ VSB

ro ≈
1

λId

gm ≈
µ
1

n

¶
Id
Vt

gmb ≈
µ
n− 1
n

¶
Id
Vt

ro ≈
1

λId

Thevenin Modeling Techniques Can Be Applied to All Cases



M.H. Perrott

gm/Id Design

 gm/Id design is completely SPICE based
- Hand calculations of gm, ro, etc. are not performed

 Various transistor parameters are plotted in terms of 
gm/Id- Low gm/Id corresponds to strong inversion
- High gm/Id corresponds to weak inversion

 Once a given value of gm/Id is chosen, it constrains 
the relationship between W, L, ft, etc. such that the 
sizing of devices becomes a straightforward exercise
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Useful References Related to gm/Id Design

 Prof. Bernhard Boser’s Lecture:
- B. E. Boser, "Analog Circuit Design with Submicron 

Transistors," IEEE SSCS Meeting, Santa Clara Valley, May 
19, 2005, 
http://www.ewh.ieee.org/r6/scv/ssc/May1905.htm

 Prof. Boris Murmann’s Course Notes: 
- https://ccnet.stanford.edu/cgi-

bin/course.cgi?cc=ee214&action=handout_view&V_sect
ion=general
 See Slides 45 to 67 in particular

 Prof. Reid Harrison’s paper on a low noise instrument 
amplifier:
- http://www.ece.utah.edu/~harrison/JSSC_Jun_03.pdf
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Summary

 CMOS devices in saturation can be utilized in weak, 
moderate, or strong inversion
- Each region of operation involves different expressions 

for drain current as a function of Vgs and Vds- It is best to use SPICE to calculate parameters such as 
gm, gmb, ro due to the complexity of the device model in 
encompassing these three operating regions
 gm/Id methodology is one such approach

- Weak inversion offers large gm/Id but slow speed, and 
strong inversion offers fast speed but lower gm/Id- Moderate inversion offers the best compromise between 
achieving reasonable gm/Id and reasonable speed

 Thevenin modeling approach is valid for all operating 
regions once gm, gmb, and ro are known


