Analysis and Design of Analog Integrated Circuits Lecture 16

Subthreshold Operation and g_m/I_d Design

Michael H. Perrott April 1, 2012

Copyright © 2012 by Michael H. Perrott All rights reserved.

A Closer Look at Transconductance

Assuming device is in strong inversion and in saturation:

$$I_D = \frac{\mu_n C_{ox} W}{2} (V_{gs} - V_{TH})^2 (1 + \lambda V_{ds})$$

$$\Rightarrow g_m = \frac{\delta I_d}{\delta V_{gs}} \approx \mu_n C_{ox} \frac{W}{L} (V_{gs} - V_{TH}) \approx \sqrt{2\mu_n C_{ox} \frac{W}{L}} I_d$$

$$\Rightarrow g_m \approx \frac{I_d \sqrt{2\mu_n C_{ox} W/L}}{\sqrt{I_d}} \approx \left[\frac{2I_d}{(V_{gs} - V_{TH})} \right]$$

Unity Gain Frequency for Current Gain, f_t

Under fairly general conditions, we calculate:

$$I_d(s) \approx I_{in}(s) \frac{1}{s(C_{gs} + C_{gd})} g_m \quad \Rightarrow \ \frac{I_d(s)}{I_{in}(s)} \approx \frac{g_m}{s(C_{gs} + C_{gd})}$$
$$\Rightarrow \ f_t = \frac{g_m}{2\pi(C_{gs} + C_{gd})}$$

I.H. Performentation
<p

Current Density as a Key Parameter

- Current density is defined as the ratio I_{d}/W :
 - We'll assume that current density is altered by keeping I_d fixed such that only W varies
 - Maintains constant power
 - r_o (i.e., $1/g_{ds} = 1/(\lambda I_d)$) will remain somewhat constant

Investigating Impact of Current Density

For simplicity, let us assume that the CMOS device follows the square law relationship

$$I_D \approx \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_{TH})^2$$

This will lead to the formulations:

$$V_{gs} - V_{TH} \approx \sqrt{\frac{2L}{\mu_n C_{ox}} \left(\frac{I_d}{W}\right)} \qquad g_m \approx \frac{2I_d}{V_{gs} - V_{TH}}$$

- These formulations are only accurate over a narrow region of strong inversion (with the device in saturation)
- However, the general trends observed from the above expressions as a function of current density will provide useful insight

Investigate the Impact of Increasing Current Density

Transconductance Efficiency Versus f_t

Transistor "Inversion" Operating Regions

Key Insights Related to Current Density

- Current density sets the device operating mode
 - Weak inversion (subthreshold): highest g_m efficiency
 - Achieves highest g_m for a given amount of current, I_d
 - Strong inversion: highest f_t
 - Achieves highest speed for a given amount of current, I_d
 - Moderate inversion: compromise between the two
 - Often the best choice for circuits that do not demand the highest speed but cannot afford the low speed of weak inversion (subthreshold operation)

Key issue: validity of square law current assumption

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_{TH})^2 (1 + \lambda V_{ds})$$

The above is only accurate over a narrow range of strong inversion (i.e., the previous plots are inaccurate)

General observations above are still true, though

A Proper Model for Subthreshold Operation

Drain current:

$$I_D = I_{D0} \frac{W}{L} e^{V_{gs}/(nV_t)} \left(1 - e^{-V_{ds}/V_t}\right)$$

Note: channel length modulation, i.e., λ , is ignored here *M.H. Perrott*

Saturation Region for Subthreshold Operation

Saturation occurs at roughly V_{ds} > 100 mV

$$\Rightarrow I_D = I_{D0} \frac{W}{L} e^{V_{gs}/(nV_t)} \left(1 - e^{-V_{ds}/V_t}\right) \approx I_{D0} \frac{W}{L} e^{V_{gs}/(nV_t)}$$

Transconductance in Subthreshold Region

Assuming device is in subthreshold and in saturation:

$$I_D \approx I_{D0} \frac{W}{L} e^{V_{gs}/(nV_t)} \qquad \begin{array}{c} \mathbf{g}_{m} \text{ purely a} \\ \text{function of } \mathbf{I}_{d}! \\ \Rightarrow g_m = \frac{\delta I_d}{\delta V_{gs}} \approx I_{D0} \frac{W}{L} e^{V_{gs}/(nV_t)} \frac{1}{nV_t} = \boxed{\frac{I_d}{nV_t}} \end{array}$$

Recall for strong inversion : $g_m \approx$

$$\approx \frac{2I_d}{(V_{gs} - V_{TH})}$$

Comparison of Strong and Weak Inversion for g_m

- Assumption: I_d is constant with only W varying
- Strong inversion formulation predicts ever increasing g_m with reduced overdrive voltage

$$g_m \approx \frac{2I_d}{(V_{gs} - V_{TH})}$$

- Reduced current density leads to reduced overdrive voltage and therefore higher g_m
- Weak inversion formulation predicts that g_m will hit a maximum value as current density is reduced

$$g_m = \approx \frac{I_d}{nV_t}$$

Note that the area of the device no longer influences g_m when operating in weak inversion (i.e., subthreshold)

Hybrid- π Model in Subthreshold Region (In Saturation)

Looks the same in form as for strong inversion, but different expressions for the various parameters

$$g_m \approx \left(\frac{1}{n}\right) \frac{I_d}{V_t} \qquad g_{mb} \approx \left(\frac{n-1}{n}\right) \frac{I_d}{V_t} \qquad r_o \approx \frac{1}{\lambda I_d}$$

- We can use the very same Thevenin modeling approach as in strong inversion
 - We just need to calculate g_m and g_{mb} differently

Noise for Subthreshold Operation (In Saturation)

Recall transistor drain noise in strong inversion:

$$\overline{i_{nd}^2} = 4kT\gamma g_{dso}\Delta f + \frac{K_f}{f} \frac{g_m^2}{WLC_{ox}^2}\Delta f$$

Thermal noise 1/f noise

In weak inversion (i.e., subthreshold):

$$\overline{i_{nd}^2} = 2kTng_m\Delta f + \frac{K_f}{f}\frac{g_m^2}{WLC_{ox}^2}\Delta f$$

Thermal noise

1/f noise

Strong Inversion Versus Weak Inversion

- Strong inversion (V_{gs} > V_{TH})
 - Poor g_m efficiency (i.e., g_m/l_d is low) but fast speed
 - Need $V_{ds} > (V_{gs} V_{TH}) = \Delta V$ to be in saturation
 - Key device parameters are calculated as:

$$g_m \approx \ rac{2I_d}{(V_{gs} - V_{TH})} \quad g_{mb} \approx \ rac{\gamma g_m}{2\sqrt{2|\Phi_F| + V_{SB}}} \quad r_o \approx rac{1}{\lambda I_d}$$

- Weak inversion (V_{gs} < V_{TH})
 - Good g_m efficiency (i.e., g_m/l_d is high) but slow speed
 - Need V_{ds} > 100mV to be in saturation
 - Key device parameters are calculated as:

$$g_m \approx \left(\frac{1}{n}\right) \frac{I_d}{V_t} \qquad \qquad g_{mb} \approx \left(\frac{n-1}{n}\right) \frac{I_d}{V_t} \qquad \qquad r_o \approx \frac{1}{\lambda I_d}$$

Moderate inversion: compromise between the two

Thevenin Modeling Techniques Can Be Applied to All Cases

g_m/I_d Design

- g_m/l_d design is completely SPICE based
 - Hand calculations of g_m, r_o, etc. are not performed
- Various transistor parameters are plotted in terms of g_m/l_d
 - Low g_m/l_d corresponds to strong inversion
 - High g_m/I_d corresponds to weak inversion
- Once a given value of g_m/l_d is chosen, it constrains the relationship between W, L, f_t, etc. such that the sizing of devices becomes a straightforward exercise

Useful References Related to g_m/I_d Design

Prof. Bernhard Boser's Lecture:

 B. E. Boser, "Analog Circuit Design with Submicron Transistors," IEEE SSCS Meeting, Santa Clara Valley, May 19, 2005,

http://www.ewh.ieee.org/r6/scv/ssc/May1905.htm

Prof. Boris Murmann's Course Notes:

- https://ccnet.stanford.edu/cgibin/course.cgi?cc=ee214&action=handout_view&V_sect ion=general
 - See Slides 45 to 67 in particular
- Prof. Reid Harrison's paper on a low noise instrument amplifier:
 - http://www.ece.utah.edu/~harrison/JSSC_Jun_03.pdf

Summary

- CMOS devices in saturation can be utilized in weak, moderate, or strong inversion
 - Each region of operation involves different expressions for drain current as a function of V_{gs} and V_{ds}
 - It is best to use SPICE to calculate parameters such as g_m, g_{mb}, r_o due to the complexity of the device model in encompassing these three operating regions
 - g_m/I_d methodology is one such approach
 - Weak inversion offers large g_m/l_d but slow speed, and strong inversion offers fast speed but lower g_m/l_d
 - Moderate inversion offers the best compromise between achieving reasonable g_m/l_d and reasonable speed
- Thevenin modeling approach is valid for all operating regions once g_m, g_{mb}, and r_o are known