### Analysis and Design of Analog Integrated Circuits Lecture 15

### Mismatch and Nonlinearity

Michael H. Perrott March 21, 2012

Copyright © 2012 by Michael H. Perrott All rights reserved.

### A Closer Look at Differential Pairs



- Fabrication of devices comes with variation
  - **Width, length, and**  $\mu_n C_{ox}$  mismatch between devices
  - Threshold voltage mismatch between devices
- M.H. Perrott

### Modeling the Impact of Mismatch in MOS Devices



- Compare the drain current of devices in saturation:
  - Assume M<sub>1</sub> has current:

$$I_{D1} \approx \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_{TH})^2$$

Assume that M<sub>2</sub> is mismatched to M<sub>1</sub>:

$$I_{D2} \approx \frac{\mu_n C_{ox}}{2} \left( \frac{W}{L} + \Delta \frac{W}{L} \right) \left( V_{gs} - \left( V_{TH} + \Delta V_{TH} \right) \right)^2$$

• Note than  $\mu_n C_{ox}$  mismatch is lumped into  $\Delta(W/L)$ 

# Key Impact of Mismatch



- Ideally, a differential pair will yield identical output currents assuming identical input voltages for V<sub>in+</sub> and V<sub>in-</sub>
- In the case of mismatch, the output currents will NOT be equal with equal input voltages

### Mismatch-Induced Offset Voltage



- Define input offset voltage of the differential pair as the input voltage difference required to achieve identical output currents from the differential pair
  - Higher mismatch leads to higher offset voltage

### Mismatch Modeled as Random Variables



- We often assume a Gaussian PDF for the random portion of mismatch
  - The standard deviation of the PDF is the key metric that we often use to approximate the impact of mismatch

$$\Delta V_{TH} \approx \sigma_{\Delta V_{TH}} \qquad \quad \Delta \frac{W}{L} \approx \sigma_{\Delta \frac{W}{L}}$$

- Note that there is also a deterministic portion of mismatch called systematic mismatch
  - Systematic mismatch can often be avoided with proper design and layout techniques

### **Estimating Mismatch Parameters**



Mathematical and experimental investigation has revealed

$$\sigma_{\Delta V_{TH}} \approx \frac{A_{V_{TH}}}{\sqrt{WL}} \qquad \qquad \sigma_{\Delta \frac{W}{L}} \approx \frac{A_K}{\sqrt{WL}}$$

A<sub>VTH</sub> and A<sub>K</sub> are proportionality factors that are sometimes provided by fabrication reports and sometimes embedded within "Monte-Carlo" device models

Key insight: better matching achieved with larger devices

### More Information on Mismatch

- Marcel Pelgrom at NXP (formerly Philips) wrote the seminal papers on this topic
  - M.J.M. Pelgrom, A.C.J. Duinmaiger, A.P.G. Welbers, "Matching Properties of MOS Transistors," IEEE J. Solid-State Circuits, vol. SC-24, pp. 1433-1439, Oct. 1989
  - M.J.M. Pelgrom, H.P. Tuinhout, M. Vertregt, "Transistor Matching in Analog CMOS Applications," IEDM Dig. of Tech. Papers, pp. 34.1.1-34.1.4, Dec. 1998

# Nonlinearities in Amplifiers

We can generally break up an amplifier into the cascade of a memoryless nonlinearity and an input and/or output transfer function



- Impact of nonlinearities with sine wave input
  - Causes harmonic distortion (i.e., creation of harmonics)
- Impact of nonlinearities with several sine wave inputs
  - Causes harmonic distortion for each input AND intermodulation products

Impact of nonlinearity often assessed based on issues related to communication system design

### **Analysis of Amplifier Nonlinearities**

- Focus on memoryless nonlinearity block
  - The impact of filtering can be added later



Model nonlinearity as a Taylor series expansion up to its third order term (assumes small signal variation)

$$y(t) \approx c_0 + c_1 x(t) + c_2 x(t)^2 + c_3 x(t)^3$$

For harmonic distortion, consider

$$x(t) = A\cos(wt)$$

For intermodulation, consider

$$x(t) = A(\cos(w_1 t) + \cos(w_2 t))$$

$$y(t) = c_0 + c_1 x(t) + c_2 x(t)^2 + c_3 x(t)^3$$
  
where  $x(t) = A \cos wt$ 

### Substitute x(t) into polynomial expression

$$y(t) - c_o = c_1 A \cos wt + c_2 A^2 \cos^2 wt + c_3 A^3 \cos^3 wt$$

$$= c_1 A \cos wt + \frac{c_2 A^2}{2} (1 + \cos 2wt) + \frac{c_3 A^3}{4} (3 \cos wt + \cos 3wt)$$
$$= \frac{c_2 A^2}{2} + \left(c_1 A + \frac{3c_3 A^3}{4}\right) \cos wt + \frac{c_2 A^2}{2} \cos 2wt + \frac{c_3 A^3}{4} \cos 3wt$$

**Fundamental** 

Harmonics

- Notice that each harmonic term, cos(*nwt*), has an amplitude that grows in proportion to A<sup>n</sup>
  - Very small for small A, very large for large A

# Frequency Domain View of Harmonic Distortion



- Harmonics cause "noise"
  - Their impact depends highly on application
    - Low noise amplifiers (LNA) for wireless systems typically not of consequence
    - Power amplifiers for wireless systems can degrade spectral mask
    - Audio amp depends on your listening preference!

Gain for fundamental component depends on input amplitude!

# 1 dB Compression Point



- Definition: input signal level such that the small-signal gain drops by 1 dB
  - Input signal level is high!



- Typically calculated from simulation or measurement rather than analytically
  - Analytical model must include many more terms in Taylor series to be accurate in this context

Harmonic Products with An Input of Two Sine Waves

$$y(t) = c_0 + c_1 x(t) + c_2 x(t)^2 + c_3 x(t)^3$$
  
where  $x(t) = A(\cos w_1 t + \cos w_2 t)$ 

DC and fundamental components

$$(c_0 + c_2 A^2) + ((c_1 A + \frac{9}{4}c_3 A^3)(\cos w_1 t + \cos w_2 t))$$

Second and third harmonic terms

$$\left(\frac{c_2A^2}{2}(\cos 2w_1t + \cos 2w_2t)\right) + \left(\frac{c_3A^3}{4}(\cos 3w_1t + \cos 3w_2t)\right)$$

Similar result as having an input with one sine wave
But, we haven't yet considered cross terms!

$$y(t) = c_0 + c_1 x(t) + c_2 x(t)^2 + c_3 x(t)^3$$
  
where  $x(t) = A(\cos w_1 t + \cos w_2 t)$ 

Second-order intermodulation (IM2) products

$$c_2 A^2 (\cos(w_1 + w_2)t + \cos(w_2 - w_1)t)$$

Third-order intermodulation (IM3) products

$$\frac{3}{4}c_3A^3\Big(\cos(2w_1+w_2)t+\cos(2w_1-w_2)t + \cos(2w_2+w_1)+\cos(2w_2-w_1)t\Big)$$

These are the troublesome ones for narrowband wireless systems

# **Corruption of Narrowband Signals by Interferers**



- Wireless receivers must select a desired signal that is accompanied by interferers that are often much larger
  - LNA nonlinearity causes the creation of harmonic and intermodulation products
  - Must remove interference and its products to retrieve desired signal

### **Use Filtering to Remove Undesired Interference**



Ineffective for IM3 term that falls in the desired signal frequency band

### **Characterization of Intermodulation**

Magnitude of third order products is set by c<sub>3</sub> and input signal amplitude (for small A)

$$\frac{3}{4}c_3A^3\Big(\cos(2w_1+w_2)t+\cos(2w_1-w_2)t + \cos(2w_2-w_1)t + \cos(2w_2+w_1) + \cos(2w_2-w_1)t\Big)$$

 Magnitude of first order term is set by c<sub>1</sub> and A (for small A)

$$(c_1A + \frac{9}{4}c_3A^3)(\cos w_1t + \cos w_2t) \approx c_1A(\cos w_1t + \cos w_2t)$$

- Relative impact of intermodulation products can be calculated once we know A and the ratio of c<sub>3</sub> to c<sub>1</sub>
  - Problem: it's often hard to extract the polynomial coefficients through direct DC measurements
    - Need an indirect way to measure the ratio of c<sub>3</sub> to c<sub>1</sub>

# Two Tone Test

Input the sum of two equal amplitude sine waves into the amplifier (assume  $Z_{in}$  of amplifier =  $R_s$  of source)



- On a spectrum analyzer, measure first order and third order terms as A is varied (A must remain small)
  - First order term will increase linearly
  - Third order IM term will increase as the cube of A

### Input-Referred Third Order Intercept Point (IIP3)

- Plot the results of the two-tone test over a range of A (where A remains small) on a log scale (i.e., dB)
  - Extrapolate the results to find the intersection of the first and third order terms



- IIP3 defined as the input power at which the extrapolated lines intersect (higher value is better)
  - Note that IIP3 is a small signal parameter based on extrapolation, in contrast to the 1-dB compression point

# Relationship between IIP3, c<sub>1</sub> and c<sub>3</sub>

Intersection point  $|c_1 A| = \left|\frac{3}{4}c_3 A^3\right|$ Solve for A (gives A<sub>iip3</sub>)  $\Rightarrow A^2 = \frac{4}{3} \left|\frac{c_1}{c_3}\right| \quad (V_p^2)$ First-order  $= c_1 A$ First-order  $= \frac{3}{4} c_3 A^3$ Color(A)

Note that A corresponds to the peak value of the two cosine waves coming into the amplifier input node (V<sub>x</sub>)

Would like to instead like to express IIP3 in terms of power

### **IIP3 Expressed in Terms of Power at Source**



### **IIP3 as a Benchmark Specification**

- Since IIP3 is a convenient parameter to describe the level of third order nonlinearity in an amplifier, it is often quoted as a benchmark spec
- Measurement of IIP3 on a discrete amplifier would be done using the two-tone method described earlier
  - This is rarely done on integrated amplifiers due to poor access to the key nodes
  - Instead, for a radio receiver for instance, one would simply put in interferers and see how the receiver does
    - Note: performance in the presence of interferers is not just a function of the amplifier nonlinearity
- Calculation of IIP3 is most easily done using a Spice simulator
  - Two-tone method is not necessary simply curve fit to a third order polynomial

### Impact of Differential Amplifiers on Nonlinearity



Assume v<sub>x</sub> is approximately incremental ground

$$I_{diff} = c_o + c_1 \frac{v_{id}}{2} + c_2 \left(\frac{v_{id}}{2}\right)^2 + c_3 \left(\frac{v_{id}}{2}\right)^3 - \left(c_o + c_1 \frac{-v_{id}}{2} + c_2 \left(\frac{-v_{id}}{2}\right)^2 + c_3 \left(\frac{-v_{id}}{2}\right)^3\right)$$
  
$$\Rightarrow I_{diff} = c_1 v_{id} + \frac{c_3}{4} v_{id}^3$$

#### Second order term removed and IIP3 improved!

### Summary

- Mismatch between devices in differential pair circuits induces an effective offset voltage
  - The value of the offset voltage is reduced by having large device dimensions
  - Fabrication reports or "Monte-Carlo" models provide the best approach to assessing the impact of mismatch
    - May not be available, which leads to guessing the impact
- Nonlinearity is typically modeled as a third order polynomial
  - Results in harmonic distortion and intermodulation
  - Third order component is often focused on in classical communication systems
  - Second order component is important for modern communication systems based on "direct conversion"
  - Differential pair offers some linearity advantages over single ended amplifiers