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A Closer Look at Differential Pairs

 Fabrication of devices comes with variation
- Width, length, and nCox mismatch between devices
- Threshold voltage mismatch between devices 2
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Modeling the Impact of Mismatch in MOS Devices

 Compare the drain current of devices in saturation:
- Assume M1 has current:

- Assume that M2 is mismatched to M1:

 Note than nCox mismatch is lumped into (W/L)
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Key Impact of Mismatch

 Ideally, a differential pair will yield identical output 
currents assuming identical input voltages for Vin+
and Vin-

 In the case of mismatch, the output currents will NOT
be equal with equal input voltages
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Mismatch-Induced Offset Voltage

 Define input offset voltage of the differential pair as 
the input voltage difference required to achieve 
identical output currents from the differential pair
- Higher mismatch leads to higher offset voltage
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Mismatch Modeled as Random Variables

 We often assume a Gaussian PDF for the random
portion of mismatch
- The standard deviation of the PDF is the key metric that 

we often use to approximate  the impact of mismatch

 Note that there is also a deterministic portion of 
mismatch called systematic mismatch
- Systematic mismatch can often be avoided with proper 

design and layout techniques
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Estimating Mismatch Parameters

 Mathematical and experimental investigation has 
revealed

- AVTH and AK are proportionality factors that are 
sometimes provided by fabrication reports and 
sometimes embedded within “Monte-Carlo” device 
models
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More Information on Mismatch

 Marcel Pelgrom at NXP (formerly Philips) wrote the 
seminal papers on this topic
- M.J.M. Pelgrom, A.C.J. Duinmaiger, A.P.G. Welbers, 

“Matching Properties of MOS Transistors,” IEEE J. 
Solid-State Circuits, vol. SC-24, pp. 1433-1439, Oct. 1989

- M.J.M. Pelgrom, H.P. Tuinhout, M. Vertregt, “Transistor 
Matching in Analog CMOS Applications,” IEDM Dig. of 
Tech. Papers, pp. 34.1.1-34.1.4, Dec. 1998
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Nonlinearities in Amplifiers

 We can generally break up an amplifier into the 
cascade of a memoryless nonlinearity and an input 
and/or output transfer function

 Impact of nonlinearities with sine wave input
- Causes harmonic distortion (i.e., creation of harmonics)

 Impact of nonlinearities with several sine wave inputs
- Causes harmonic distortion for each input AND  

intermodulation products
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Analysis of Amplifier Nonlinearities

 Focus on memoryless nonlinearity block
- The impact of filtering can be added later

 Model nonlinearity as a Taylor series expansion up to 
its third order term (assumes small signal variation)

- For harmonic distortion, consider

- For intermodulation, consider
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Harmonic Distortion

 Substitute x(t) into polynomial expression

Fundamental Harmonics

 Notice that each harmonic term, cos(nwt), has an 
amplitude that grows in proportion to An

- Very small for small A, very large for large A
11
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Frequency Domain View of Harmonic Distortion

 Harmonics cause “noise”
- Their impact depends highly on application

 Low noise amplifiers (LNA) for wireless systems – typically 
not of consequence

 Power amplifiers for wireless systems – can degrade 
spectral mask

 Audio amp – depends on your listening preference!
 Gain for fundamental component depends on input 

amplitude!
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Memoryless
Nonlinearity
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1 dB Compression Point

 Definition:  input signal level 
such that the small-signal 
gain drops by 1 dB
- Input signal level is high! A1-dB

1 dB

20log(A)

20log(Afund)

 Typically calculated from simulation or measurement 
rather than analytically
- Analytical model must include many more terms in Taylor 

series to be accurate in this context
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Harmonic Products with An Input of Two Sine Waves

 DC and fundamental components

 Second and third harmonic terms

 Similar result as having an input with one sine wave
- But, we haven’t yet considered cross terms!
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Intermodulation Products

 Second-order intermodulation (IM2) products

 Third-order intermodulation (IM3) products

- These are the troublesome ones for narrowband 
wireless systems 
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Corruption of Narrowband Signals by Interferers

 Wireless receivers must select a desired signal that is 
accompanied by interferers that are often much larger
- LNA nonlinearity causes the creation of harmonic and 

intermodulation products
- Must remove interference and its products to retrieve 

desired signal
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Use Filtering to Remove Undesired Interference

 Ineffective for IM3 term that falls in the desired signal 
frequency band
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Characterization of Intermodulation

 Magnitude of third order products is set by c3 and 
input signal amplitude (for small A)

 Magnitude of first order term is set by c1 and A (for 
small A)

 Relative impact of intermodulation products can be 
calculated once we know A and the ratio of c3 to c1- Problem:  it’s often hard to extract the polynomial 

coefficients through direct DC measurements
 Need an indirect way to measure the ratio of c3 to c1

18



M.H. Perrott

Two Tone Test

 Input the sum of two equal amplitude sine waves into 
the amplifier (assume Zin of amplifier = Rs of source)

 On a spectrum analyzer, measure first order and third 
order terms as A is varied (A must remain small)
- First order term will increase linearly
- Third order IM term will increase as the cube of A
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Input-Referred Third Order Intercept Point (IIP3) 

 Plot the results of the two-tone test over a range of A
(where A remains small) on a log scale (i.e., dB)
- Extrapolate the results to find the intersection of the 

first and third order terms

- IIP3 defined as the input power at which the 
extrapolated lines intersect (higher value is better)
 Note that IIP3 is a small signal parameter based on 

extrapolation, in contrast to the 1-dB compression point
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Relationship between IIP3, c1 and c3

 Intersection point

 Solve for A (gives Aiip3)

 Note that A corresponds to the peak value of the two 
cosine waves coming into the amplifier input node (Vx)- Would like to instead like to express IIP3 in terms of power
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IIP3 Expressed in Terms of Power at Source

 IIP3 referenced to                     
Vx (peak voltage)

 IIP3 referenced to Vx
(rms voltage)
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IIP3 as a Benchmark Specification

 Since IIP3 is a convenient parameter to describe the level 
of third order nonlinearity in an amplifier, it is often 
quoted as a benchmark spec

 Measurement of IIP3 on a discrete amplifier would be 
done using the two-tone method described earlier
- This is rarely done on integrated amplifiers due to poor 

access to the key nodes
- Instead, for a radio receiver for instance, one would simply 

put in interferers and see how the receiver does
 Note: performance in the presence of interferers is not just a 

function of the amplifier nonlinearity
 Calculation of IIP3 is most easily done using a Spice 

simulator
- Two-tone method is not necessary – simply curve fit to a 

third order polynomial 
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Impact of Differential Amplifiers on Nonlinearity

 Assume vx is approximately incremental ground
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 Second order term removed and IIP3 improved!
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Summary

 Mismatch between devices in differential pair circuits 
induces an effective offset voltage
- The value of the offset voltage is reduced by having large 

device dimensions
- Fabrication reports or “Monte-Carlo” models provide the 

best approach to assessing the impact of mismatch
 May not be available, which leads to guessing the impact

 Nonlinearity is typically modeled as a third order 
polynomial
- Results in harmonic distortion and intermodulation
- Third order component is often focused on in classical 

communication systems
- Second order component is important for modern 

communication systems based on “direct conversion”
- Differential pair offers some linearity advantages over 

single ended amplifiers


