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Recall Frequency Domain View of Random Process

 It is valid to take 
the FFT of a 
sequence from 
a given trial

 However, notice 
that the FFT 
result changes 
across trials
- Fourier 

Transform of a 
random 
process is 
undefined !

- We need a 
new tool 
called spectral 
analysis
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Expectation of a Random Variable

 The expectation of random variable y is defined as

- We see that:

- In the case where y = 0 (i.e., the mean of y is 0)

 E(y2) is called the second moment of random variable y
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E(y) =

Z ∞

−∞
yfy(y)dy

E(y) =

Z ∞

−∞
yfy(y)dy = μy

E((y − μy)
2) =

Z ∞

−∞
(y − μy)

2fy(y)dy = σ2y

E(y2) = E((y − μy)
2) = σ2y
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Independence of Random Variables

 Consider two random variables x and y
- x and y are said to be independent if and only if

 Where f(x,y) is the joint probability distribution of x and y
- which implies

 The above relationship is also true under a less strict 
condition called linear independence

 If x and y are zero mean, then E(xy) = 0 implies that x 
and y are uncorrelated
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E(xy) =

Z ∞

−∞
xyf(x, y)dxdy =

Z ∞

−∞
xf(x)dx

Z ∞

−∞
yf(x)dy

f(x, y) = f(x)f(y)

⇒ E(xy) = E(x)E(y)
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Autocorrelation and Spectral Density (Discrete-Time)

 Assume a zero mean, stationary random process x[n]:
- The autocorrelation of x[n] is defined as:

 Note that:

- The power spectral density of random process x[n] is 
defined as

 Note that  = fT, where f is frequency (in Hz) and T is the 
sample period of the process (in units of seconds)

 Power spectral density of x[n] is essentially the (Discrete-
Time) Fourier Transform of the autocorrelation of x[n]

5

Rxx[m] = E(x[n] · x[n+m])

Sx(λ) =

∞X
m=−∞

Rxx[m]e
−j2πλm

Rxx[0] = E(x
2[n]) = σ2x
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Implications of Independence (Discrete-Time)

 If the samples of a zero mean random process, x[n], 
are independent of each other, this implies

 The corresponding power spectral density is then 
calculated as

- This is a known as a white random process, whose 
spectral density is flat across all frequencies

6

Rxx[m] = E(x[n]x[n+m])

=

½
E(x2[n]) = σ2x, m = 0
E(x[n])E(x[n+m]) = 0, m 6= 0

⇒ Sx(λ) =

∞X
m=−∞

Rxx[m]e
−j2πλm = σ2x
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Understanding White Random Processes

 Independence between 
samples implies that previous 
samples provide no benefit in 
trying to predict the value of 
the current sample

 For Gaussian white processes, 
the best we can do is use the 
Gaussian PDF to determine the 
probability of a sample being 
within a given range
- Variance of the process is a 

key parameter 7
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Spectral Density of a White Process (Discrete-Time)

 The spectral density of a white process is well defined
- This is in contrast to the FFT of a white process, which varies 

between different trials of the process 
- Note that the spectral density is double-sided since it is 

based on the Fourier Transform (which is defined for both 
positive and negative frequencies)
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Autocorrelation and Spectral Density (Continuous-Time)

 Assume a zero mean, stationary random process x(t):
- The autocorrelation of x(t) is defined as:

 Note that

- The power spectral density of random process x(t) is 
defined as

 Again, the power spectral density corresponds to the 
Fourier Transform of the autocorrelation function of the 
random process x(t)
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Rxx(τ) = E(x(t) · x(t+ τ))

Sx(f) =

Z ∞

τ=−∞
Rxx(τ )e

−j2πfτdτ

Rxx(0) = E(x
2(t)) = σ2x
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White Random Process (Continuous-Time)

 Assume a zero mean, stationary random process x(t):
- Assuming  that the samples of a random process, x(t), are 

independent of each other, this implies

 Where (t) is known as the delta function with properties:

- The power spectral density of x(t) is then:

 As with a discrete-time white process, a continuous-time 
white process has flat spectral density across all frequencies

 Note that the variance of a white process is actually infinite
 Practical “white noise” is bandlimited and has finite variance
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Rxx(τ) = E(x(t)x(t+ τ )) = Noδ(t)

Sx(f) =

Z ∞

τ=−∞
Rxx(τ)e

−j2πfτdτ = No

δ(t) = 0 for t 6= 0,
Z ∞

−∞
δ(t)dt = 1
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Spectral Density of a White Process (Continuous-Time)

 As with a discrete-time, white process, the spectral 
density of a continuous-time, white process is well 
defined
- It is flat with frequency
- For analog circuits, units of No are V2/Hz or A2/Hz
- It is double-sided, meaning that it is defined for both 

positive and negative frequencies
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Spectral Density Calculations Involving Filtering

 Assuming an input random process x(t) is fed into a linear, 
time-invariant filter H(s), the resulting power spectral 
density of the output random process y(t) is calculated as:

- Note that filtering a white random process leads to a new 
random process that is no longer white
 The output spectral density is no longer flat across frequency
 Different output samples in time are no longer independent 12

Sx(f)

H(s)
x(t) y(t)

f
0 H(f)

f
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2

Sy(f)

f
0 f1 f2-f1-f2

No

4No
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Spectral Density Calculations Involving Power

 The power (i.e., variance) of a zero mean random process 
corresponds to the integration of its power spectral density

- Note that we can consider the power in certain frequency 
bands by changing the value of f1 and f2- In the above example:
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Sx(f)

H(s)
x(t) y(t)

f
0 H(f)

f
0 f1 f2-f1-f2

2

Sy(f)

f
0 f1 f2-f1-f2

4No
No

Py = σ2y = Ryy(0) =

Z ∞

−∞
Sy(f)df =

Z −f1

−f2
Sy(f) +

Z f2

f1

Sy(f)

Py = 4No · 2(f2 − f1)
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Double-Sided Versus Single-Sided Spectral Densities

 It turns out that power spectral densities are always 
symmetric about positive and negative frequencies

 Single-sided spectral densities offer a short cut in which 
only the positive frequencies are drawn
- In order to conserve power, the spectral density magnitude 

is doubled
- For the above example: 
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Sx(f)

H(s)
x(t) y(t)

f
0 H(f)

f
0 f1 f2

2

Sy(f)

f
0 f1 f2

8No
2No

⇒ Py = 8No · (f2 − f1)
We will use only single-sided spectral densities in this class
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Noise in Resistors

 Corresponds to white noise (i.e., thermal noise) in 
terms of either voltage or current

- Circuit designers like to use the above notation in which 
vn

2 and in2 represent power in a given bandwidth f in 
units of Volts2 or Amps2, respectively

- k is Boltzmann’s constant:
- T is temperature (in Kelvins)

 Usually assume room temperature of 27 degrees Celsius

RR

vn

R in
2

2

v2n = 4kTR∆f i2n = 4kT
1

R
∆f

k = 1.38× 10−23J/K

⇒ T = 300K

i2nv2n
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Noise In Inductors and Capacitors

 Ideal capacitors and inductors have no noise!

 In practice, however, they will have parasitic resistance
- Induces noise
- Parameterized by adding resistances in parallel/series 

with inductor/capacitor
 Include parasitic resistor noise sources

LC

16
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Noise in CMOS Transistors (Assumed in Saturation)

 Modeling of noise in transistors includes several noise 
sources
- Drain noise

 Thermal and 1/f – influenced by transistor size and bias
- Gate noise

 Induced from channel – influenced by transistor size and bias
 Caused by routing resistance to gate (including resistance of 

polysilicon gate)
 Can be made negligible with proper layout such as fingering of 

devices

ID

G
D

S

Drain Noise (Thermal and 1/f)

Gate Noise (Induced and Routing Parasitic)

Transistor Noise Sources

We will ignore gate noise in this class
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Drain Noise – Thermal  (Assume Device in Saturation) 

 Thermally agitated carriers in the 
channel cause a randomly varying 
current

-  is called excess noise factor 
 = 2/3 in long channel
 = 2 to 3 (or higher!) in short 

channel MOS devices
- gdso will be discussed shortly 

ind

f

4kTγgdso

2

Δf

S D

GVGS

VD>ΔV

ind

(Note: gdso = gm/α)

i2nd

¯̄̄̄
th
= 4kTγgdso∆f
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Drain Noise – 1/f  (Assume Device in Saturation)

ind

f

4kTγgdso

2

Δf

drain
1/f noise

drain thermal noise

1/f noise
corner frequency

 Traps at channel/oxide interface 
randomly capture/release carriers

- Parameterized by Kf

 Kf provided by fab
 Sometimes Kf of PMOS << Kf of 

NMOS due to buried channel

S D

GVGS

VD>ΔV

ind

- To minimize: want large area (high WL)
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Drain-Source Conductance:  gdso

 gdso is defined as channel resistance with Vds=0
- Transistor in triode, so that 

- Ideally equals gm, but effects such as velocity saturation 
can cause gdso to be different than gm

⇒ gdso =
dId
dVds

¯̄̄̄
¯
Vds=0

= μnCox
W

L
(Vgs − VT )
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Plot of gm and gds versus Vgs for 0.18 NMOS Device
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 For Vgs bias voltages around 1.2 V: α =
gm
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≈ 1
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Plot of gm and gds versus Idens for 0.18 NMOS Device
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RS

RG

RD

RD

vgs

vs

gmvgs

ID

Cgs ind

RG
vnG

RS

vnD

vnS

Vin

Vout

2

2

2

2

rogmbvs

Key Noise Sources for Noise Analysis

v2nS = 4kTRS∆f

v2nD = 4kTRD∆fv2nG = 4kTRG∆f

i2nd = 4kTγgdso∆f +
Kf

f

g2m
WLC2ox

∆f Transistor drain noise:

Thermal noise 1/f noise
23
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Useful References on MOSFET Noise

 B. Wang et. al., “MOSFET Thermal Noise Modeling for 
Analog Integrated Circuits”, JSSC, July 1994  

 Jung-Suk Goo, “High Frequency Noise in CMOS Low 
Noise Amplifiers”, PhD Thesis, Stanford University,  
August 2001
- http://www-tcad.stanford.edu/tcad/pubs/theses/goo.pdf

 Jung-Suk Goo et. al., “The Equivalence of van der Ziel
and BSIM4 Models in Modeling the Induced Gate Noise 
of MOSFETS”,  IEDM 2000, 35.2.1-35.2.4 

 Todd Sepke, “Investigation of Noise Sources in Scaled 
CMOS Field-Effect Transistors”, MS Thesis, MIT, June 
2002
- http://www-mtl.mit.edu/wpmu/sodini/theses/
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Input Referral of Noise

 It is often convenient to input refer the impact of noise 
when performing noise analysis in circuits
- To justify the above, recall that filtering a random process 

x(t) leads to an output random process y(t) such that

 For the case where H(f) = K (i.e., a simple gain factor):

25

Vin VoutK

vnS
2

Vin VoutK

vnS
21

K2

Sy(f) = |H(f)|2 Sx(f)

⇒ Sy(f) = |K|2Sx(f) ⇒ Sx(f) =
1

|K|2Sy(f)
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RD

ind

vnD

Vin

Vout

2

2

RD

ind vnDVin

Vout

221
gm

2
1

((RD||ro)gm)2

RD

ind vnDVin

Vout

221
gm

2
1

((RD||ro)gm)2

Input-refer the
noise sources
(apply superposition)

Can directly add the
voltage noise sources
(in power, not voltage) 
if they are uncorrelated

Example:  Common Source Amplifier

 Note that we will 
always assume that 
different circuit 
elements produce 
uncorrelated noise

26



M.H. Perrott 27

Summary

 Power spectral density provides a rigorous approach 
to describing the frequency domain behavior of the 
ensemble behavior of stationary, ergodic (zero mean) 
random processes
- Key concepts:  Expectation, Autocorrelation, Fourier 

Transform, Correlation, Filtering
 Circuit designers like the following “notation”

- Single-sided rather than double-sided spectra
- Voltage and current noise power denoted as      and

 Key noise properties of circuit elements
- Resistor:   thermal noise (white noise)
- MOS transistor:  thermal + 1/f noise

 Useful analysis tool:  input referral of noise sources
- Assumption of uncorrelated noise from different 

elements allows their power (i.e., variance) to be added

i2nv2n


