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Continuous-Time Versus Discrete-Time Signals

 Real world signals, such as acoustic signals from speakers 
and RF signals from cell phones, are continuous-time in 
nature

 Digital processing of signals requires samples of real world 
signals, which yields discrete-time signals

 Analog circuits are used to sample and digitize real world 
signals for use by digital processors

 It is useful to study discrete-time signals when examining 
the issue of noise
- Many insights can be applied back to continuous-time signals
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 DC average or mean, x, is defined as

 Power, Px, and energy, Ex, are defined as

- For many systems, we often remove the mean since it is 
often irrelevant in terms of information:

Definition of Mean, Power, and Energy
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Definition of Signal-to-Noise Ratio

 Signal-to-Noise ratio (SNR) indicates the relative impact 
of noise on system performance

 We often like to use units of dB to express SNR:
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SNR Example

 Scaling the gain factor A leads to 
different SNR values
- Lower A results in lower SNR
- Signal quality steadily degrades 

with lower SNR
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Analysis of Random Processes

 Random processes, such as noise, 
take on different sequences for 
different trials
- Think of trials as different 

measurement intervals from the 
same experimental setup

 For a given trial, we can apply our 
standard analysis tools and metrics
- Fourier transform, mean and power 

calculations, etc…
 When trying to analyze the 

ensemble (i.e. all trials) of possible 
outcomes, we find ourselves in 
need of new tools and metrics
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Tools and Metrics for Random Processes

 Assume that random processes we will deal with have 
the properties of being stationary and ergodic
- True for noise in many practical systems 
- Greatly simplifies analysis

 Examine in both time and frequency domains
- Time domain

 Introduce the concept of a probability density function (PDF) 
to characterize behavior of signals at a given sample time

 Use PDF to calculate mean and variance
 Similar to mean and power of non-random signals

- Frequency domain
 We will discuss a more proper framework in the next lecture
 For now, we will simply use Fourier analysis (i.e., Fast 

Fourier Transform, FFT) on signals from individual trials
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 Stationary
- Statistical behavior is 

independent of shifts in 
time in a given trial:
 Implies noise[k] is 

statistically 
indistinguishable     
from noise[k+N]

 Ergodic
- Statistical sampling

can be performed at one 
sample time (i.e., n=k) 
across different trials, or
across different sample 
times of the same trial 
with no change in the 
statistical result

Stationary and Ergodic Random Processes
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Examples

 Non-Stationary
noise[n]   (Trial 1)
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noise[n]  (Trial = 1)

sample
value

Histogram of 100 samples

Histogram of 1,000 samples

Histogram of 10,000 samples

Histogram of 1,000,000 samples

sample
value

sample
value

sample
value

Experiment to see Statistical Distribution

 Create histograms of 
sample values from trials 
of increasing lengths

 Assumption of stationarity
implies histogram should 
converge to a shape 
known as a probability 
density function (PDF)
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Formalizing the PDF Concept

sample
value

x

fX(x)

Histogram

PDF

Area = 1

This shape is referred
to as a Gaussian PDF
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 Define x as a 
random variable 
whose PDF has the 
same shape as the 
histogram we just 
obtained

 Denote PDF of x as 
fX(x)
- Scale fX(x) such 

that its overall 
area is 1
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Formalizing Probability

 The probability that random variable x takes on a value in 
the range of x1 to x2 is calculated from the PDF of x as:

- Note that probability values are always in the range of 0 to 1
- Higher probability values imply greater likelihood that the 

event will occur
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Example Probability Calculation

 Verify that overall area is 1:

 Probability that x takes on a value between 0.5 and 1.0:
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This shape is 
referred to as a 

uniform PDF
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Examination of Sample Value Distribution

 Assumption of ergodicity implies the value occurring at a 
given time sample, noise[k], across many different trials 
has the same PDF as estimated in our previous 
experiment of many time samples and one trial

 We can model noise[k] as the random variable x
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Probability Calculation

 In a given trial, the probability that noise[k] takes on a 
value in the range of x1 to x2 is computed as
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Mean and Variance

 The mean of random variable x, x, corresponds to its 
average value
- Computed as

 The variance of random variable x, x
2, gives an 

indication of its variability
- Computed as

- Similar to power of a signal

μx

x

fX(x)

16



M.H. Perrott

Visualizing Mean and Variance from a PDF

 Changes in mean shift the center of mass of PDF
 Changes in variance narrow or broaden the PDF

- Note that area of PDF must always remain equal to one 
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Example Mean and Variance Calculation

 Mean:

 Variance:
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Frequency Domain View of Random Process

 It is valid to take 
the FFT of a 
sequence from 
a given trial

 However, notice 
that the FFT 
result changes 
across trials
- Fourier 

Transform of a 
random 
process is 
undefined !

- We need a 
new tool 
called spectral 
analysis
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White Noise

 When the FFT result looks relatively flat, we refer to the 
random process as being white
- Note: this type of noise source is often used for calibration 

of advanced stereo systems
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Shaped Noise

 Shaped noise occurs when white noise is sent into a filter
- FFT of shaped noise will have frequency content according 

to the type of filter
 Example:  highpass filter yields shaped noise with only high 

frequency content
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Summary

 Discrete-time processes provide a useful context for 
studying the properties of noise
- Analog circuits often convert real world (continuous-

time) signals into discrete-time signals
 Signal-to-noise ratio is a key metric when examining 

the impact of noise on a system
 Noise is best characterized by using tools provided by 

the study of random processes
- We will assume all noise processes we deal with are 

stationary and ergodic
- Key metrics are mean and variance
- Frequency analysis using direct application of Fourier 

Transforms is fine for one trial, but not valid when 
considering the ensemble of a random process

We will consider spectral analysis for continuous-time signals
in the next lecture


