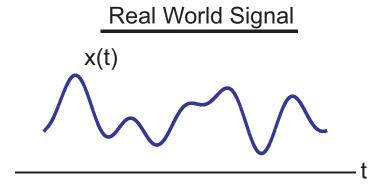
Analysis and Design of Analog Integrated Circuits Lecture 13

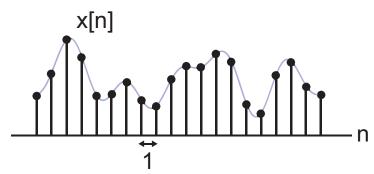
Basics of Noise

Michael H. Perrott March 14, 2012

Copyright © 2012 by Michael H. Perrott All rights reserved.

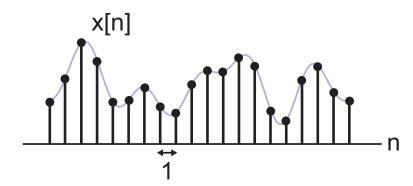
Continuous-Time Versus Discrete-Time Signals





- Real world signals, such as acoustic signals from speakers and RF signals from cell phones, are continuous-time in nature
- Digital processing of signals requires samples of real world signals, which yields discrete-time signals
- Analog circuits are used to sample and digitize real world signals for use by digital processors
- It is useful to study discrete-time signals when examining the issue of noise
 - Many insights can be applied back to continuous-time signals

Definition of Mean, Power, and Energy



DC average or mean, μ_x , is defined as

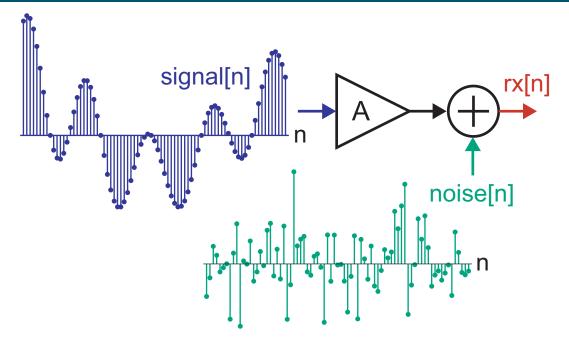
$$\mu_x = \frac{1}{N} \sum_{k=0}^{N-1} x[n]$$

Power,
$$P_x$$
, and energy, E_x , are defined as
$$P_x = \frac{1}{N} \sum_{k=0}^{N-1} x[n]^2 \qquad E_x = \sum_{k=0}^{N-1} x[n]^2$$

For many systems, we often remove the mean since it is often irrelevant in terms of information:

$$\tilde{P}_x = \frac{1}{N} \sum_{k=0}^{N-1} (x[n] - \mu_x)^2 \qquad \tilde{E}_x = \sum_{k=0}^{N-1} (x[n] - \mu_x)^2$$

Definition of Signal-to-Noise Ratio



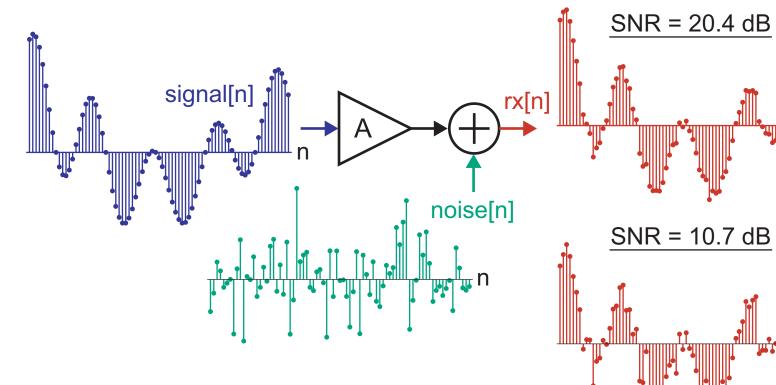
 Signal-to-Noise ratio (SNR) indicates the relative impact of noise on system performance

$$SNR = \frac{\tilde{P}_{signal}}{\tilde{P}_{noise}}$$

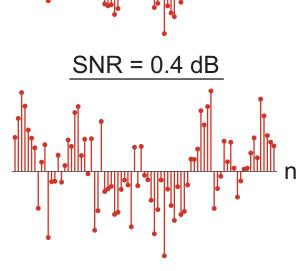
We often like to use units of dB to express SNR:

SNR (dB) =
$$10 \log \left(\frac{\tilde{P}_{signal}}{\tilde{P}_{noise}} \right)$$

SNR Example

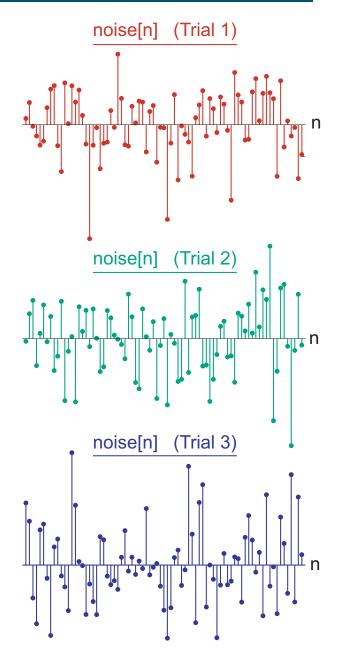


- Scaling the gain factor A leads to different SNR values
 - Lower A results in lower SNR
 - Signal quality steadily degrades with lower SNR



Analysis of Random Processes

- Random processes, such as noise, take on different sequences for different trials
 - Think of trials as different measurement intervals from the same experimental setup
- For a given trial, we can apply our standard analysis tools and metrics
 - Fourier transform, mean and power calculations, etc...
- When trying to analyze the ensemble (i.e. all trials) of possible outcomes, we find ourselves in need of new tools and metrics



Tools and Metrics for Random Processes

- Assume that random processes we will deal with have the properties of being stationary and ergodic
 - True for noise in many practical systems
 - Greatly simplifies analysis
- Examine in both time and frequency domains
 - Time domain
 - Introduce the concept of a probability density function (PDF) to characterize behavior of signals at a given sample time
 - Use PDF to calculate mean and variance
 - Similar to mean and power of non-random signals
 - Frequency domain
 - We will discuss a more proper framework in the next lecture
 - For now, we will simply use Fourier analysis (i.e., Fast Fourier Transform, *FFT*) on signals from *individual* trials

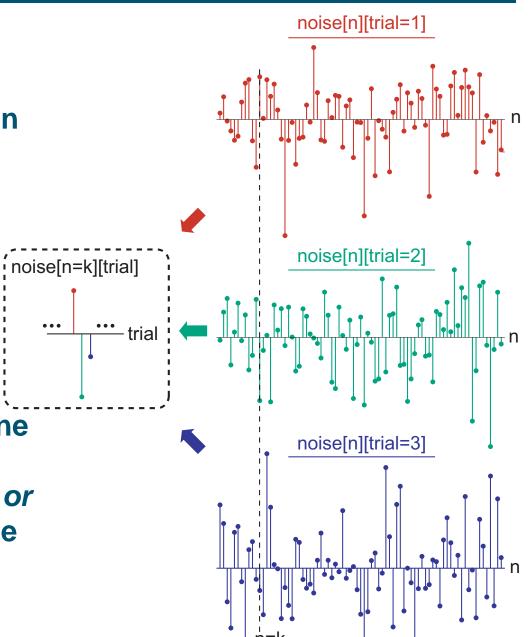
Stationary and Ergodic Random Processes

Stationary

- Statistical behavior is independent of shifts in time in a given trial:
 - Implies noise[k] is statistically indistinguishable from noise[k+N]

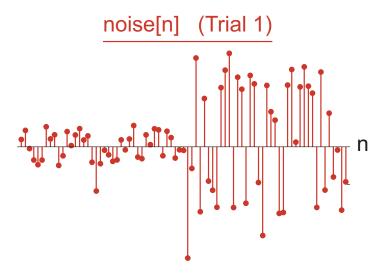
Ergodic

can be performed at one sample time (i.e., n=k) across different trials, or across different sample times of the same trial with no change in the statistical result

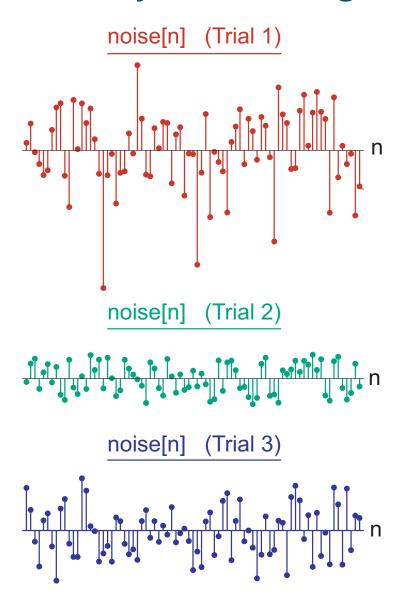


Examples

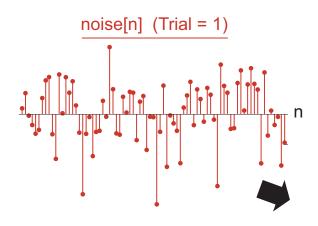
Non-Stationary



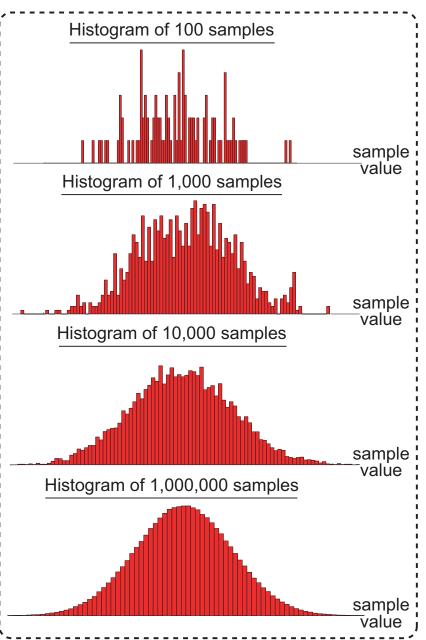
Stationary, but Non-Ergodic



Experiment to see Statistical Distribution



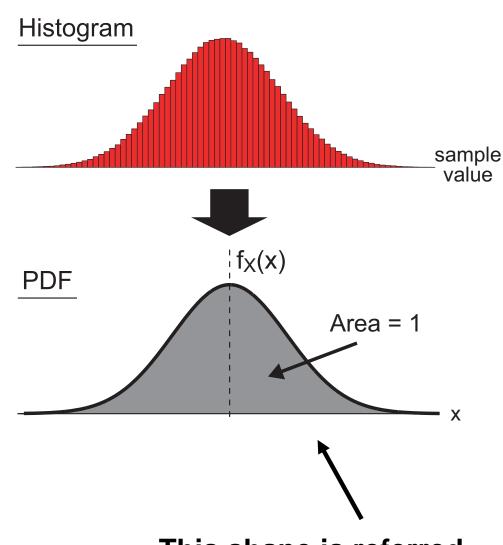
- Create histograms of sample values from trials of increasing lengths
- Assumption of stationarity implies histogram should converge to a shape known as a probability density function (PDF)



Formalizing the PDF Concept

- Define x as a random variable whose PDF has the same shape as the histogram we just obtained
- Denote PDF of x as $f_x(x)$
 - Scale f_X(x) such that its overall area is 1

$$\Rightarrow \int_{-\infty}^{\infty} f_X(x) = 1$$



This shape is referred to as a *Gaussian* PDF

Formalizing Probability

The *probability* that random variable x takes on a value in the range of x_1 to x_2 is calculated from the PDF of x as:

$$\operatorname{Prob}(x_1 \le x \le x_2) = \int_{x_1}^{x_2} f_X(x) dx$$

$$\underline{\operatorname{PDF}}$$

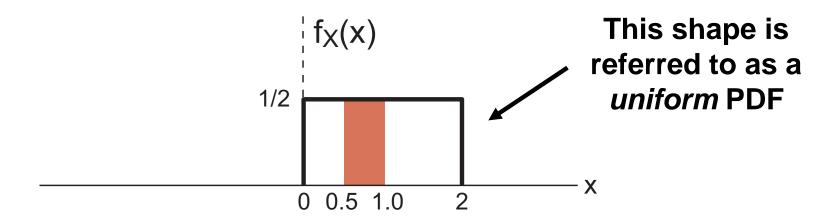
Note that probability values are always in the range of 0 to 1

X2

X₁

Higher probability values imply greater likelihood that the event will occur

Example Probability Calculation



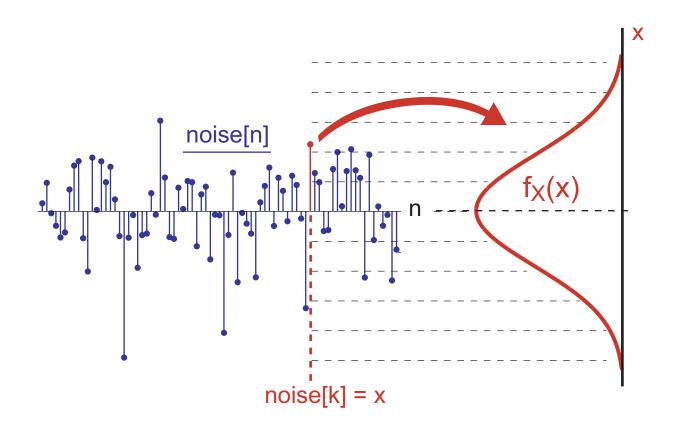
Verify that overall area is 1:

$$\int_{-\infty}^{\infty} f_X(x) dx = \int_{0}^{2} 0.5 \, dx = \boxed{1}$$

Probability that x takes on a value between 0.5 and 1.0:

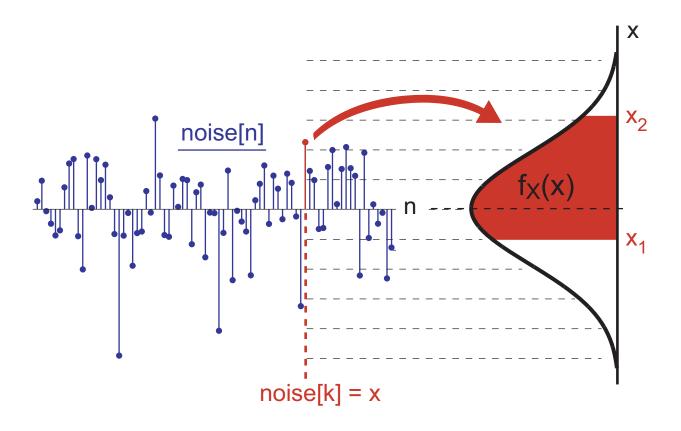
$$Prob(0.5 \le x \le 1.0) = \int_{0.5}^{1.0} 0.5 \, dx = \boxed{0.25}$$

Examination of Sample Value Distribution



- Assumption of ergodicity implies the value occurring at a given time sample, noise[k], across many different trials has the same PDF as estimated in our previous experiment of many time samples and one trial
- We can model noise[k] as the random variable x

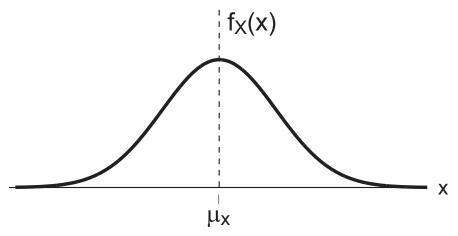
Probability Calculation



In a given trial, the probability that noise[k] takes on a value in the range of x₁ to x₂ is computed as

$$Prob(x_1 \le x \le x_2) = \int_{x_1}^{x_2} f_X(x) dx$$

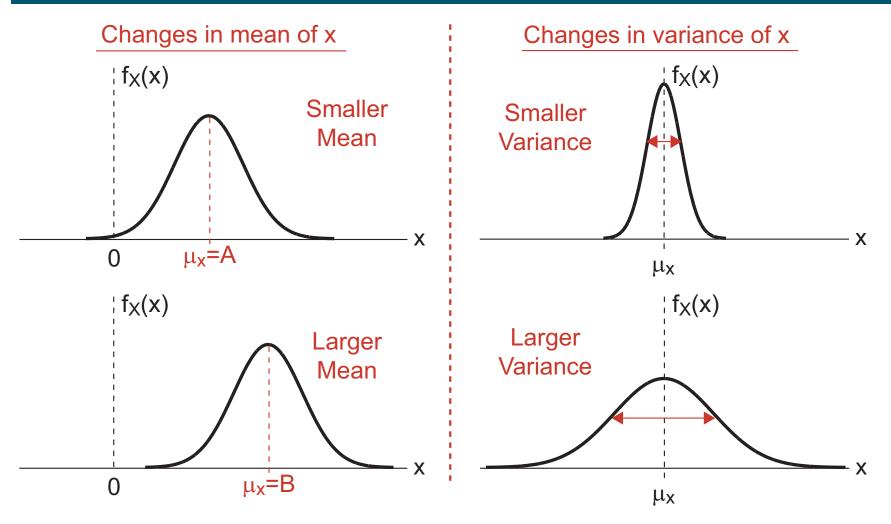
Mean and Variance



- The mean of random variable x, μ_x , corresponds to its average value e^{∞}
 - lacktriangler Computed as $\mu_x = \int_{-\infty}^{\infty} x f_X(x) dx$
- The variance of random variable x, σ_x^2 , gives an indication of its variability
 - Computed as $\sigma_x^2 = \int_{-\infty}^{\infty} (x \mu_x)^2 f_X(x) dx$

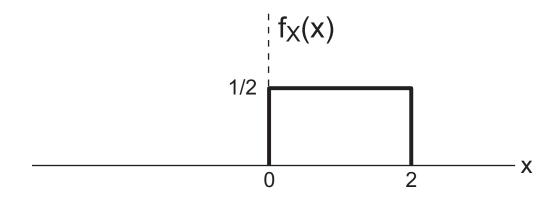
Similar to power of a signal

Visualizing Mean and Variance from a PDF



- Changes in mean shift the center of mass of PDF
- Changes in variance narrow or broaden the PDF
 - Note that area of PDF must always remain equal to one

Example Mean and Variance Calculation



Mean:

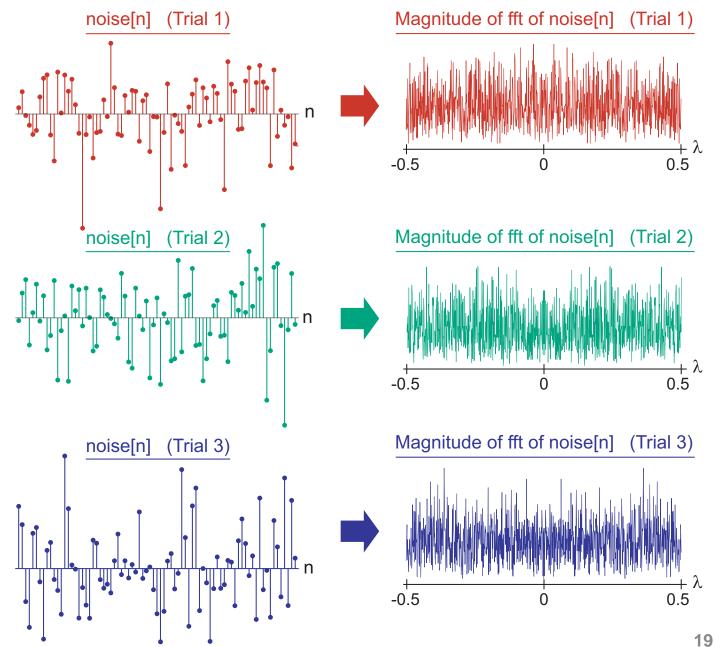
$$\mu_x = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^2 x \frac{1}{2} dx = \frac{1}{4} x^2 \Big|_0^2 = \boxed{1}$$

Variance:

$$\sigma_x^2 = \int_{-\infty}^{\infty} (x - \mu_x)^2 f_X(x) dx = \int_0^2 (x - 1)^2 \frac{1}{2} dx$$
$$= \frac{1}{6} (x - 1)^3 \Big|_0^2 = \frac{1}{6} + \frac{1}{6} = \boxed{\frac{1}{3}}$$

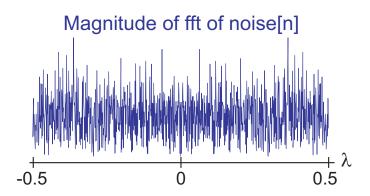
Frequency Domain View of Random Process

- It is valid to take the FFT of a sequence from a given trial
- However, notice that the FFT result changes across trials
 - Fourier Transform of a random process is undefined!
 - We need a new tool called spectral analysis



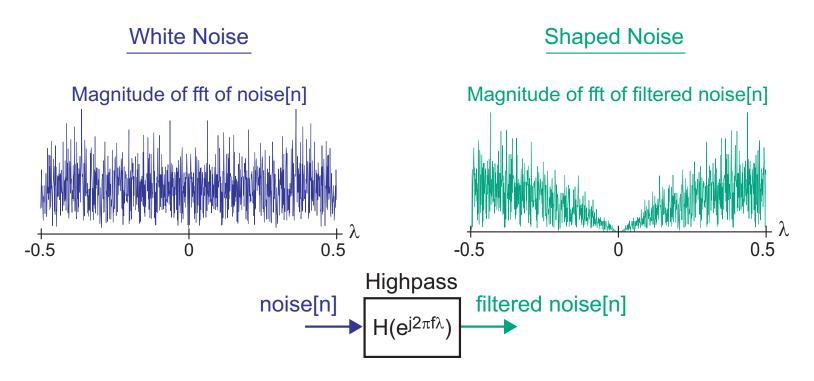
White Noise

White Noise



- When the FFT result looks relatively flat, we refer to the random process as being white
 - Note: this type of noise source is often used for calibration of advanced stereo systems

Shaped Noise



- Shaped noise occurs when white noise is sent into a filter
 - FFT of shaped noise will have frequency content according to the type of filter
 - Example: highpass filter yields shaped noise with only high frequency content

Summary

- Discrete-time processes provide a useful context for studying the properties of noise
 - Analog circuits often convert real world (continuoustime) signals into discrete-time signals
- Signal-to-noise ratio is a key metric when examining the impact of noise on a system
- Noise is best characterized by using tools provided by the study of random processes
 - We will assume all noise processes we deal with are stationary and ergodic
 - Key metrics are mean and variance
 - Frequency analysis using direct application of Fourier Transforms is fine for one trial, but not valid when considering the ensemble of a random process

We will consider spectral analysis for continuous-time signals in the next lecture