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Fourier Series
and 

Fourier Transform
• Complex exponentials
• Complex version of Fourier Series
• Time Shifting, Magnitude, Phase
• Fourier Transform
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The Complex Exponential as a Vector

• Euler’s Identity:

Note:

• Consider I and Q as the real and imaginary parts
– As explained later, in communication systems, I stands 

for in-phase and Q for quadrature
• As t increases, vector rotates counterclockwise

– We consider ejwt to have positive frequency
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The Concept of Negative Frequency

Note:

• As t increases, vector rotates clockwise
– We consider e-jwt to have negative frequency

• Note:  A-jB is the complex conjugate of A+jB
– So, e-jwt is the complex conjugate of ejwt
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Add Positive and Negative Frequencies

Note:

• As t increases, the addition of positive and 
negative frequency complex exponentials leads to a 
cosine wave
– Note that the resulting cosine wave is purely real and 

considered to have a positive frequency
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Subtract Positive and Negative Frequencies

Note:

• As t increases, the subtraction of positive and 
negative frequency complex exponentials leads to a 
sine wave
– Note that the resulting sine wave is purely imaginary and 

considered to have a positive frequency
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Fourier Series

• The Fourier Series is compactly defined using 
complex exponentials

• Where:
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From The Previous Lecture

• The Fourier Series can also be written in terms of 
cosines and sines:

t
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Compare Fourier Definitions
• Let us assume the following:

• Then:

• So:
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Square Wave Example
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Graphical View of Fourier Series
• As in previous lecture, we can plot Fourier Series 

coefficients
– Note that we now have positive and negative values of n

• Square wave example:
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• A given Fourier coefficient,    ,represents the 
weight corresponding to frequency nwo

• It is often convenient to index in frequency (Hz)

Indexing in Frequency
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The Impact of a Time (Phase) Shift

• Consider shifting a signal x(t) in time by Td
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• Define:

• Which leads to:
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Square Wave Example of Time Shift

• To simplify, note that           except for odd n
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Graphical View of Fourier Series
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Magnitude and Phase
• We often want to ignore the issue of time (phase) 

shifts when using Fourier analysis
– Unfortunately, we have seen that the An and Bn

coefficients are very sensitive to time (phase) shifts

• The Fourier coefficients can also be represented in 
term of magnitude and phase

• where:



M.H. Perrott © 2007 Fourier Series and Fourier Transform, Slide 16

Graphical View of Magnitude and Phase
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Does Time Shifting Impact Magnitude?
• Consider a waveform x(t) along with its Fourier 

Series

• We showed that the impact of time (phase) 
shifting x(t) on its Fourier Series is

• We therefore see that time (phase) shifting does 
not impact the Fourier Series magnitude
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Parseval’s Theorem
• The squared magnitude of the Fourier Series 

coefficients indicates power at corresponding 
frequencies
– Power is defined as:

Note:
* means
complex
conjugate
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The Fourier Transform
• The Fourier Series deals with periodic signals

• The Fourier Transform deals with non-periodic
signals
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Fourier Transform Example

• Note that x(t) is not periodic
• Calculation of Fourier Transform:
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Graphical View of Fourier Transform

t

x(t)

T

A

-T

This is called
a sinc function

X(f)
2TA

2T
1

2T
-1

f



M.H. Perrott © 2007 Fourier Series and Fourier Transform, Slide 22

Summary
• The Fourier Series can be formulated in terms of 

complex exponentials
– Allows convenient mathematical form
– Introduces concept of positive and negative frequencies

• The Fourier Series coefficients can be expressed in 
terms of magnitude and phase
– Magnitude is independent of time (phase) shifts of x(t)
– The magnitude squared of a given Fourier Series coefficient 

corresponds to the power present at the corresponding 
frequency

• The Fourier Transform was briefly introduced
– Will be used to explain modulation and filtering in the 

upcoming lectures
– We will provide an intuitive comparison of Fourier Series 

and Fourier Transform in a few weeks …
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