Fourier Series
and
Fourier Transform

+ Complex exponentials

+ Complex version of Fourier Series
- Time Shifting, Magnitude, Phase
* Fourier Transform

Copyright © 2007 by M.H. Perrott
All rights reserved.

Fourier Series and Fourier Transform, Slide 1



The Complex Exponential as a Vector
Q

Note:

o Jot J=v-1

sin(wt) |- - - - - - -

cos(wt)

Euler's Identity:
e/t = cos(wt) + j sin(wt)
Consider I and @ as the rea/ and imaginary parts

- As explained later, in communication systems, I stands
for in-phase and Q for guadrature

As t increases, vector rotates counterclockwise
- We consider e"* to have positive frequenc
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The Concept of Negative Frequency

Q
Note:

e 7" = cos(wt) — j sin(wt)

-Sin(())t) ——————— e-j(gt

- As t increases, vector rotates clockwise
- We consider e“/** to have negative frequency

* Note: A-jBis the complex conjugate of A+jB
- So, e/ is the complex conjugate of e"*
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Add Positive and Negative Frequencies

Q
Note:

2 cos(wt) = !t 4 eI
GMﬂ

N

~2cos(ot) |

7
7
Ve

ejmt

As t increases, the addition of positive and
negative frequency complex exponentials leads to a
cosine wave

- Note that the resulting cosine wave is purely rea/ and
considered to have a positive frequency
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Subtract Positive and Negative Frequencies

Q
Note:

j2sin(wt) = /™t — eI

/

| 2sin(wt)

As t increases, the subtraction of positive and
negative frequency complex exponentials leads to a
sine wave

- Note that the resulting sine wave is purely imaginary and
considered to have a positive frequency
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Fourier Series

 X(t)
4\/\\//\\//\\/t

*+ The Fourier Series is compactly defined using
complex exponentials

x(t) = i X, elmwot

n=——oo

to+T |
/ z(t)e "ot dt
t

o

1
T
- Where:

Wo = — X, = A, + 3B,
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From The Previous Lecture
X(t)

vee 7] //\,t

< ' >
T

- The Fourier Series can also be written in terms of
cosines and sines:

x(t) = ag + Z ap, cOS(nwot) + by sin(nw,t)
n=1
where forn > 0 :
9 to+T 9 to+T
Uy = —/ x(t) cos(nw,t)dt, b, = —/ x(t) sin(nw,t)dt
1T /. 1" Jy,

2T 1 [letT
and where : Wo = —7, Qo = —/ x(t)dt
t

o
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Compare Fourier Definitions

* Let us assume the following:

A, =A_,

- Then:

X, = A, + jB,

B, = —B_, By =0

00 50 50
r(t) = Z X, efnwot — Z A ednwot Z iB, ednwet

n=—oo

n=——oo

nN=—oo

= Ap + Z A, (eI™Wot eI Woly) 4 Z 7By, (e1Wet — gmInWol)

n=1

n=1

= Ay + Z 2A,, cos(nw,t) + Z —2B,, sin(nw,t)

n=1

- So:

Aozao

n=1
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2A,, = a,

—2B,, = b,
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Square Wave Example
X(1)

+—>

A--—— T2
000 000 t
A- - S—
& >
R 1 to+T . ' T
X, = /t e
1 /O . 1 r7T/2 |
Y T e
T «/—T/Z T 0
1 —A . 1 A .
— 1 — JnweT /2 —jnw,T/2 1
T_jnwo( ‘ )+T—jnw0(€ )
1 24 A

= T i, (1 — cos(nw,T'/2)) = —jE(l — cos(n))
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Graphical View of Fourier Series

As in previous lecture, we can plot Fourier Series
coefficients
- Note that we now have positive and negative values of n

* Square wave example:
, A 0 (even n)
Xn=A,+3B, = —j—(1 —cos(nm)) = .-
+J jmr( (n)) { i=24  (odd n)
An ﬁ. Bn
2A
3n
13579 '"III‘ 1.3 57 9
— 000 000000000000000000 /) —@ n
9 7 5 -3 -1 9 7 5 -3 -1
24
3n
| -2

7T
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Indexing in Frequency

A given Fourier coefficien'r,f(n ,represents the
weight corresponding to frequency nw,

x(t) = Z X, elnwot

nN=——oo

It is often convenient to index in fregquency (Hz)

nw, = 2n(nf,) = 2w (nl>

T
Ar 2A | Bf
T 1
2A
13579 e |l1357 09
I T.1T T T "‘III‘ TTTTT
gléé’]_ X —2—1—2—3—1_ X
TTTTT TTTTT 24
3n
-2A
[ ]
7T
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The Impact of a Time (Phase) Shift
(1) x(t)

—> < >
A--— T2 A--—,— T —
(Y X (X X t ‘ 'YX | (XX} t
Aad L I I [ B
< > >
T T/4 T/4

+ Consider shifting a signal x(7) in time by T,

. 1 [ftetT .
V= /t - T))e—imwot gy
Define: T=t—-T; = dr =dt
R 1 to"'T"'Td .
. Which leads to: V, — — / 2 (7)o T+ ) g7
T to"‘Td

. 1 [ltotT . R
_ e—]nwOTd T / ZI?(T)G_anOTCZT _ e—jnonan
t

o
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Square Wave Example of Time Shift
(1) ' X(t)
N TR — AT
(X X ) (XX ¢ ‘ (YY) : (X X ) ¢
A--— S A
— Ti4 Tl

A

X, = —j— (1 — cos(nm))

ni

0 (even n)

:{ —j24 (odd n)

&

A . —andA
Y, = e IWetd X

_ e—jnwo(—T/éL)Xn
_ o in@n/T)-T/4)

_oInT/2 v
— ) /Xn

* To simplify, note that X, =0 except for odd n

A

= Y, =
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{ jsin(nm/2) (—j24

) =

| £ (even n)
sin(nm/2)>=  (odd n)
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Graphical View of Fourier Series

'X(t) ' X(t)
A I +—> A <= P>
o T/2 T 1 17T
ooo eooo ¢ ‘ (XY | (XX t
A- — Ao
< > A >
T T/4'T/4
y . ¥, .
o
13579 - 3 3 7
eoe T TTTT oo T T T T
f ¢ f
97534 o 9 bs [l s b g
T T TTT T T T|T T T
2A Y| Br Br
T
2
3”T 13579 13579
ooe T T TTT XX T T TTT
o f 0000000000606 0000000000 t
97531 es 97534 ves
T T TTT oA T T TT
3n
-2A
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Magnitude and Phase

+ We often want to ignore the issue of time (phase)
shifts when using Fourier analysis

- Unfortunately, we have seen that the A, and B,
coefficients are very sensitive to time (phase) shifts

+ The Fourier coefficients can also be represented in
term of magnitude and phase

Xn = A, ‘|_]Bn — |Xn‘€jq)n

- where:

. B,
X, = VA2 1 B2 3, — tan-! (A—)

M.H. Perrott © 2007 Fourier Series and Fourier Transform, Slide 15



Graphical View of Magnitude and Phase

' X(t) ' X(t)
. «— <« >
A--— T2 [~ — AT —
(Y X ) .”t ‘ 'YX | ooot
EA— > LA T
T T/4'T/4
! | X ! | Xl
2A 7|1 2A 2A TP 2A
- ||| - ||
2A 2A 24A 24
371;T T3n QT Tﬁ
00 | o ...f o000 o ...f
97531135739 9-7-53-1|1 35739
TTTTTITTTTT TTTTTITTTTT
O O
135709 o
T TTTTT SR PR FUU U PO PURG
9 -7 -5 -3 -1[sesesssses ., 9-7-5-31/135178
TTTTT n TTTTTITTTTT
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Does Time Shifting Impact Magnitude?

+ Consider a waveform x(7) along with its Fourier
Series

z(t) & X,

+ We showed that the impact of time (phase)
shifting x(7) on its Fourier Series is

r(t —Ty) < e Jrwelax,

+ We therefore see that time (phase) shifting does
not impact the Fourier Series magnitude

A

Xn

—Jjnwe1y — Xn

—inws,Ty v
6 .] O X’}’L

:‘6
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Parseval’'s Theorem

+ The squared magnitude of the Fourier Series
coefficients indicates power at corresponding

frequencies | e
- Power is defined as: T/ Q;Q(t)dt
to

1 to—|—T 1 to"—T > ~ .
—/ 22 (t)dt = T/ w(t) Y Xpe!™oldt
t (4

I 0 o n——o0
g pte+T |
Note: = Z Xn T/ x(t)e! ™ot dt
* means n=-—00 to
complex > > 2

X,

conhjugate = Z X, Xf{: Z
n—=—oo / n—=—oo
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The Fourier Transform

+ The Fourier Series deals with periodic signals

x(t) = i X, elmwel

. 1 [flet? .
X, = /t et
* The Fourier Transform deals with non-periodic

signals

o0 = | T x(f)e Iy

X(f) = /OO x(t)e 72Tt
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Fourier Transform Example

' X(t)
A- -

T T

* Note that x(?) is not periodic
+ Calculation of Fourier Transform:

X(f) = /OO x(t)e 72Tt

T A T
— / Ae—jz’ﬁftdt _ . e—jQﬂ'ft
_T —j27'('f _T
Asin(2w fT)

mf
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Graphical View of Fourier Transform

A--

' X(t)

_ Asin(2rw fT)

X(f) ==

: 1

This is called
a s/nc function
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Summary

- The Fourier Series can be formulated in terms of
complex exponentials
- Allows convenient mathematical form
- Introduces concept of positive and negative frequencies

+ The Fourier Series coefficients can be expressed in
terms of magnitude and phase
- Magnitude is independent of time (phase) shifts of x(1)

- The magnitude squared of a given Fourier Series coefficient
corresponds to the power present at the corresponding
frequency

* The Fourier Transform was briefly introduced

- Will be used to explain modulation and filtering in the
upcoming lectures

- We will provide an intuitive comparison of Fourier Series
and Fourier Transform in a few weeks ..
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