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Intro to 
Fourier Series

• Vector decomposition
• Even and Odd functions
• Fourier Series definition and examples
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Review of Vector Decomposition

• Any vector can be decomposed into 
a set of appropriately weighted 
orthonormal basis vectors

• Example:

x = [1  0]

y = [0  1] r = [1.3  0.75]
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Calculation of Vector Weights

• Perform inner products with 
basis vectors

• Example:

x = [1  0]

y = [0  1] r = [1.3  0.75]

I

Q
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The Basis Vectors are Not Unique

r = [1.3  0.75]

I

Q

y = [              ]
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x = [                ]
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• Inner product calculations:
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Observations on Basis Decomposition
• We can consider any vector as a sum of 

weighted orthonormal basis vectors
• The weights are determined by an inner

product calculations (also known as projections)
– Consist of element-by-element multiplications 

followed by addition of the resulting products

• Inner product calculations:
r = [1.3  0.75]
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Can We Decompose Functions?
• Consider a periodic function such as a square wave

• Could we decompose the above waveform into a 
weighted sum of basis functions?

• If so, what would be a good choice for such basis 
functions?  

• How would we calculate the weights?

t
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Consider Sine Wave Basis Functions
• Suppose we consider sine waves of progressively 

increasing frequencies as our basis functions

• Check out the following Java applet demo:
– Available at: http://www.falstad.com/fourier/

t

t

t

sin(ωot)

sin(2ωot)

sin(3ωot)
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Issue: Sine Waves Are Limited
• A sine wave corresponds to an odd function

• Odd function definition:

• Adding odd functions together can only produce an 
odd function

t

t

sin(ωot)
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Consider Cosine Wave Basis Functions
• Even function definition:

• Cosine waves are even functions

t

t

t

cos(ωot)

cos(2ωot)

cos(3ωot)
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Combine Cosines and Sines
• If we use both cosine and sine waveforms as basis 

functions, we can realize both even and odd 
functions (and any combination)

tt

OddEven

t

t

t

cos(ωot)

cos(2ωot)

cos(3ωot)

t

t

t

sin(ωot)

sin(2ωot)

sin(3ωot)
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The Fourier Series
• A periodic waveform, x(t), with period T can be 

represented as an infinite sum of weighted cosine 
and sine waveforms

t

T

x(t)
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Intuition for Fourier Series
• Compare Fourier Series to vector decomposition:

• The Fourier Series weight (i.e., an and bn) 
calculations are analogous to vector inner products!

Vector Decomp. Fourier Series
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t

Ksin(ωot) K

-K

T

Sine Wave Example

(DC Average is 0)
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t

Ksin(ωot) K

-K

T

Graphical View of Fourier Series (Sine)
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• We can plot Fourier coefficients as a function of 
index or frequency
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T

Fourier Series of Cosine
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t

K(cos(ωot)+1) 2K T

Fourier Series of Cosine with DC component
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• Using a well known trigonometric identity:

Fourier Series of Phase-Shifted Cosine
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• Using a well known trigonometric identity:

Vector View of Phase-Shifted Cosine

t

K

-K

T

Kcos(ωot - θ)

I = cos(ωot)

Q = sin(ωot)

θ

Kcos(θ)

Ksin(θ)
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Square Wave Example

t

T

T/2

x(t)

A

-A• By inspection:
– DC average = 0  ⇒ a0 = 0
– x(t) is odd   ⇒ an = 0  (n ≥ 1)
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Summary
• Vector decomposition provides a nice starting point 

for understanding Fourier Series
– Vector decomposition into a sum of weighted basis vectors

• Fourier Series decomposes periodic waveforms into 
an infinite sum of weighted cosine and sine functions
– We can look at waveforms either in ‘time’ or ‘frequency’
– Useful tool:  even and odd functions 

• Some issues we will deal with next time
– Fourier Series definition covered today is not very compact

• We will look at a simpler formulation based on complex 
exponentials

– Fourier Series only deals with periodic waveforms
• We will introduce the Fourier Transform to deal with non-

periodic waveforms
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