
 1

Behavioral Simulation of a Basic GMSK Transceiver
using the CppSim Program

Michael H. Perrott

http://www.cppsim.com

July 2008

Copyright © 2004-2008 by Michael H. Perrott
All rights reserved.

Table of Contents

Setup.. 2
Introduction ... 2

A. Transmitter Architecture .. 2
B. Receiver Architecture ... 4

Performing Basic Operations within Sue2 and CppSimView .. 4
A. Opening Sue2 Schematics .. 4
B. Running the CppSim Simulation.. 6

Plotting Time-Domain Results.. 8
A. I/Q Signal Plots .. 8
B. I/Q Eye Diagrams ... 9

Plotting Frequency Domain Results.. 11
A. Transmitter Output Spectrum (Modulated) .. 11
B. Transmitter Output Spectrum (Unmodulated).. 13

Examining Nonidealities ... 16
A. Intersymbol Interference (ISI).. 16
B. Phase Synchronization.. 19
C. Transmitter and Receiver Noise ... 22

Design Overview of the PLL Transmitter... 23
A. Assumed Parameter Settings .. 24
B. Modeling... 24
C. Loop Filter Design using the PLL Design Assistant .. 26

Noise Analysis of the Unmodulated PLL using the PLL Design Assistant.. 27
The Need for the gmsk_limitamp Module .. 29
Overview of the I/Q Generator.. 31

A. Implementing Clocking Within Modules... 32
B. Creating the Gaussian FIR Filter .. 33

Conclusion... 35

 2

Setup

Download and install the CppSim Version 3 package (i.e., download and run the self-extracting file
named setup_cppsim3.exe) located at:

http://www.cppsim.com

Upon completion of the installation, you will see icons on the Windows desktop corresponding to the
PLL Design Assistant, CppSimView, and Sue2. Please read the “CppSim (Version 3) Primer”
document, which is also at the same web address, to become acquainted with CppSim and its various
components. Please read the manual “PLL Design Using the PLL Design Assistant Program”,
which is located at http://www.cppsim.com, to obtain more information about the PLL Design
Assistant.

Introduction

This document will explore the implementation of a system level representation of a GMSK
(Gaussian Minimum Shift Keying) transceiver using the CppSim behavioral simulator. GMSK, which
is widely used in GSM cell phones, is a modulation method that encodes data information by phase
modulating a constant envelope sine wave signal. By constraining the transmitter output to have
constant envelope, a nonlinear power amplifier can be used that broadcasts the signal with high
efficiency (usually around 50% efficiency, as compared to about 10% efficiency encountered with
linear power amps).

In this document, we will also briefly mention the similarities of GSMK modulation to GFSK
(Gaussian Frequency Shift Keying) modulation. This latter standard is often employed in cordless
phones according to specifications such as DECT.

 A. Transmitter Architecture

To explore GMSK modulation, we will focus on the transmitter structure shown in Figure 1, which
employs a PLL with an I/Q mixer in its feedback loop. The function of the I/Q mixer is to vary the
phase at the transmitter output according to I/Q signals generated by an I/Q generator block. The I/Q
generator creates this signals by first smoothing a binary data stream with a Gaussian transmit filter
and then accumulating the resulting frequency modulation signal, fmod, to form a modulated phase
signal, Φmod. The modulated phase signal is then used as the argument for sine and cosine functions in
order to create the I/Q signals.

 3

Kv = 30 MHz/V
fo = 900 MHz

Gaussian

LPF (p[k])

Data

Generator

Digital I/Q Generation

out(t)

T

T

t

Td

t

T

Loop Filter
Reference
Frequency

vin(t)
PFD

N

RF Transmit
Spectrum

0
f

fRF

Trans.
Noise

Power
Amp

Kph

1 - z
-1

cos(Φ)

sin(Φ)

D/A

D/A

Φmodfmod

90
o

I

Q

Peak-to-Peak

Frequency

Deviation

Td

t

In
s
ta

n
ta

n
e
o
u
s

F
re

q
u
e
n
c
y

Data Eye

Limit
Amp

(100 MHz)

=
1

1 MHz

Includes
Zero-Order

Hold

Icp H(s)

Figure 1: A GMSK modulator implemented as an offset PLL.

Smoothing by the Gaussian transmit filter has the effect of reducing the spectral content of the
transmitted signal. Given a sample period of T and symbol period of Td , as shown in the figure, the
discrete-time impulse response of the transmit filter, p[k], is formulated as

2
1

2
][

⎟
⎠
⎞

⎜
⎝
⎛−

= σ

σπ

k

ehkp

where

T
T

BT
d

d π
σ

2
178.1

=

The above impulse response is influenced by two key parameters:

• BTd: the ratio of the bandwidth of the Gaussian filter, B, to the symbol rate, 1/Td,
o For GMSK systems, BTd is often set to 0.3
o For GFSK systems, BTd is often set to 0.5

• h: the modulation index, which is defined as the ratio of peak-to-peak frequency deviation to
the symbol rate

o For GMSK systems, h must be precisely set to 0.5
o For GFSK systems, h can be loosely set to 0.5 +/- 0.05

 4

GMSK systems achieve much better spectral efficiency than their GFSK counterparts due to their
lower BTd product, but have the disadvantage of requiring very accurate modulation control in order to
achieve a precise setting of h.

In this document, we will explore the GMSK transmitter structure by examining its implementation in
CppSim, running simulations, and examining signals in the form of eye diagrams and power spectra.

 B. Receiver Architecture

Figure 2 displays a direct conversion receiver that will be used to demodulate the desired GMSK RF
signal. For simplicity, we will ignore the many practical difficulties encountered with this structure,
such as high sensitivity to DC offsets, antennae impedance variations, and local oscillator feed-
through. The noise source in the figure represents the overall input-referred noise of the receiver,
which can be used to examine the influence of receiver noise on the overall signal-to-noise ratio of the
receiver.

0

f

ffRF

fRF

Received
Spectrum

Receiver
Noise

f

Baseband
Spectrum

cos(2πfRFt)

IR

QR

NR

Receiver
Noise

Modulation
Signal

Transmitter
Noise

S(IR+jQR)

Trans.
Noise LNA

Band
Select
Filter

Channel
Select
Filter

sin(2πfRFt)

Figure 2: A direct conversion receiver for GMSK detection.

Performing Basic Operations within Sue2 and CppSimView

In this section, the user will be guided through basic tasks such as opening the GMSK example system
within the Sue2 schematic editor and running CppSim simulations.

A. Opening Sue2 Schematics

• Click on the Sue2 icon to start Sue2, and then select the GMSK Example library from the
schematic listbox. The schematic listbox should now look as follows:

 5

• Select the gmsk_overall_system cell from the above schematic listbox. The Sue2 schematic
window should now appear as shown below. Key signals and parameters for this schematic
include

o ifilt and qfilt: correspond to the received I/Q signals which will be used to generate
eye diagrams

o phase_adj: corresponds to the empirically derived optimal phase value for
demodulating the I/Q signals. We will later explore the impact of changing this phase
value.

• Select the gmsk_pll_transmitter icon within the above schematic, and then press e to descend

down into its associated schematic. You should now see the schematic shown below. Some
key signals in the transmitter schematic include

o vin_filt: corresponds to the input voltage of the VCO scaled by Kv (the VCO gain),
which will be used to plot the output spectrum of the transmitter

 6

o isig and qsig: correspond to the ideal I/Q signals that we desire to transmit, which will
be used to create ideal I/Q eye diagrams to allow comparison to the received ones
within the gmsk_overall_system cell.

• Press Ctrl-e to return to the gmsk_overall_system cellview.

B. Running the CppSim Simulation

• Within the Sue2 window, select Tools CppSim Simulation. You should see the Cppsim
Run Menu that pops up. Left click on the Edit Sim File button, and an Emacs window should
pop up.

 7

• Now open CppSimView and make sure it synchronizes to your new schematic. If not, left-
click the Synch button on the CppSimView window to do it.

• Go back to the CppSim Run Menu. Double-click on Edit Sim File – an Emacs window should
appear that indicates that num_sim_steps is set to 1e6 and Ts is set to 1/9e9. You may then
close the Emacs window if you like.

• Click on the Compile/Run button to run the simulation.
• Click on the No Output File radio button and select test.tr0 as the output file.
• Click on the No Nodes radio button to load in the simulated signals. CppSimView should now

appear as shown below

 8

Plotting Time-Domain Results

Given the completion of the above simulation, let us now examine the resulting I/Q signals in the
time-domain in the form of signal plots and eye diagrams.

A. I/Q Signal Plots

• In the CppSimView window, double-click on signals xi1_isig and then xi1_qsig. You should
see plots of the ideal I/Q waveforms as shown below

 9

• Now click on the Reset Node List button, and then double-click on signals ifilt and qfilt. You

should see plots of the received I/Q signals as shown below.

We see that there is pretty good agreement between the ideal and received waveforms, the only real
difference being their relative magnitude. The received I/Q waveforms are a factor of 10 lower in
magnitude due to the fact that the transmitter output was scaled by 1/5 in the ‘simple channel block’
within the gmsk_overall_system cellview and that demodulation by unit amplitude cosine/sine
waveforms leads to another factor of 1/2 in scaling of the received signal.

B. I/Q Eye Diagrams

• Click on the plotsig(…) radio button in CppSimView and then select the eyesig(…) function.
Set period to be 2/0.5e6 (i.e., two symbols long for the I/Q waveforms – note that the I/Q
waveforms have twice the symbol period as the instantaneous frequency waveform) and
start_off to be 5e-6 (i.e., 5 microseconds, which is long enough for the transmitter PLL to
reasonably settle). Hit Return to enter the function into the CppSimView function list.
CppSimView should now appear as shown below.

 10

• Clock on the nodes radio button, and then double-click on signal xi1_isig and then on signal
xi1_qsig. The eye diagrams of the ideal I/Q signals should appear as shown below.

• Now click on the Reset Node List button, and then double-click on signals ifilt and qfilt. The
received I/Q eye diagrams should appear as shown below.

 11

Given the above eye diagrams, we see that the received waveforms look very close to ideal!

Plotting Frequency Domain Results

We will now examine both the modulated and unmodulated output spectrum of the transmitter.

A. Transmitter Output Spectrum (Modulated)

Now perform the following operations in CppSimView:

• Click on the test.tr0 radio button and then choose the output file to be test_spectrum.tr0.
• Click on the eyesig(…) radio button and then choose the plotting function to be

plot_pll_mod_spectrum(…). Set the fspan parameter to 5e6 (i.e., to examine the output
spectrum +/- 5 MHz about the carrier frequency), and then hit Return. CppSimView should
appear as shown below.

 12

• Click on the No Nodes radio button, and then double-click on xi1_vin_filt. The resulting
modulated output spectrum should appear as shown below.

o Unfortunately, this spectrum does not resemble what we would expect to see for a
GMSK modulator. The problem is that we have too few simulation points.

• To get a better spectrum plot, we need to increase the number of simulation points. To do so,
click on the Edit Sim File button in CppSim Run Menu, change the num_sim_steps
parameter from 1e6 to 50e6 within the Emacs window that pops up, and then save the file.
You may close Emacs when you complete this task.

 13

• Click on the Compile/Run button in CppSimView Run Menu to start the CppSim simulation.
Note that this simulation takes about 10 minutes on a 2.6 GHz Pentium 4 machine with 1 Gig
of DRAM, and about the same on a 1.3 GHz Pentium M laptop with 1 Gig of DRAM. If the
simulation appears to be taking too long on your machine, you can end it by hitting Ctrl-Alt-
Delete, selecting the Processes tab, and then ending the test.exe process. An alternative way
to stop the simulation is to click on the Kill Run button in CppSimView Run Menu.

o Note that you can also descend down into the gmsk_pll_transmitter icon within Sue2,
click on the Tools->CppSim Simulation, and then click on the Compile/Run
CppSim button within CppSimView Run Menu. By running the
gmsk_pll_transmitter on its own (i.e., without the receiver), the simulation will run
nearly twice as fast. Once the run is completed, you would again select the
plot_pll_mod_spectrum(…) plotting function and then select signal vin_filt as its
argument.

• Assuming that you ran the above simulation within cell gmsk_overall_system, click on the
No Nodes button in CppSimView and then double-click on the xi1_vin_filt signal. You
should see the plot shown below.

B. Transmitter Output Spectrum (Unmodulated)

• Within the gmsk_overall_system schematic of Sue2, double-click on the
gmsk_pll_transmitter icon and then change the mod_enable parameter from 1 to 0. Save the
schematic. The Sue2 schematic window should now appear as follows.

 14

• Click on the Compile/Run button within CppSimView Run Menu to run the simulation. Note
that this will again take some time to run.

• Click on the No Nodes button in CppSimView, and then double-click on signal xi1_vin_filt.
You should see the output spectrum plot as show below.

For the case of an unmodulated sine wave, we often look at L(f) (which is the spectrum of the phase of
the sine wave rather than the sine wave itself) instead of the output spectrum of the sine wave. It turns
out that L(f) and the output spectrum are essentially the same when the sine wave is unmodulated (i.e.,
when the phase deviations are small). However, the CppSimView function that plots L(f) has a more

 15

convenient display format for looking at phase noise, so we’ll now proceed with plotting L(f) rather
than the output spectrum show above.

• CppSimView, click on the plot_pll_mod_spectrum(…) radio button, and then select the
plot_pll_phasenoise(…) function. Change f_low to 10e3 and f_high to 20e6 and then push
Return to save these values within the function list. CppSimView should appear as shown
below.

• Now click on the nodes radio button within CppSimView, and then double-click on signal
xi1_vin_filt. You should see a plot of L(f) as shown below.

Figure 3: Simulated phase noise of the unmodulated PLL transmitter.

 16

o Note that it would not be appropriate to plot L(f) to look at the modulated output. For
L(f) to be meaningful, changes in the phase of the output sine wave need to be small.

o Also note that you are limited in how low of a frequency offset you can examine. You
would need to increase the number of simulation points to lower the frequency offset
range that you can observe.

o Finally, note that we will compare the above phase noise plot to calculated results in
the PLL Design section of this document.

For those further interested in understanding the differences between the
plot_pll_mod_spectrum(…) and plot_pll_phasenoise(…) functions, consider looking at the
corresponding Matlab files comp_psd_mod.m and comp_psd.m within the directory
c:\CppSim\CppSimShared\MatlabCode (where c:\CppSim should be replaced with the directory
location that you specified when installing CppSim). These files assume that you are looking directly
at the input voltage to the VCO (after the point at which any input-referred VCO noise sources are
added), and therefore require Kv to be appropriately set (note that Kv=30e6 in this case).

Examining Nonidealities

In this section, we will briefly explore the impact of nonidealities such as intersymbol interference,
poor phase synchronization, and noise.

A. Intersymbol Interference (ISI)

Let us first examine the influence of receiver-induced intersymbol interference.

• Double-click on the gmsk_pll_transmitter icon within the Sue2 schematic window and set
mod_enable to 1.

• Double-click on the gmsk_iq_receiver icon and set fp to 250e3. Upon saving the Sue2
schematic, it should appear as shown below.

 17

• Click on the Edit Sim File button within CppSim Run Menu and then set num_sim_steps to
1e6 within the Emacs window that pops up. Save the file and then exit Emacs.

• Click on the Compile/Run button to run the CppSim simulation.
• Click on the test_spectrum.tr0 radio button and change the output file to test.tr0.
• Click on the plot_pll_phase_noise(…) radio button and change the plotting function to be

eyesig(…).
• Click on the No Nodes radio button to load in the simulation signals. CppSimView should

now appear as shown below:

• Double-click on the ifilt and qfilt signals to plot their corresponding eye diagrams, which

should appear as shown below.

 18

• Comparison of the above eye diagrams to previous ones plotted with 2 MHz receiver

bandwidth reveals the impact of intersymbol interference that occurs due the reduction of the
receiver fp parameter to 250 kHz. You might consider setting the fp parameter of the receiver
to different values and observe the corresponding impact on the received eye diagrams.

Transmitter-induced intersymbol interference can be examined in similar fashion.

• Within Sue2, set the fp parameter of the gmsk_iq_receiver icon back to 2e6 and then set the
pll_bw parameter of the gmsk_pll_transmitter icon to 250e3. The Sue2 schematic should
appear as shown below once it is saved.

• Run CppSim, and then plot the resulting eye diagrams for the ifilt and qfilt signals. The
resulting plot should appear as shown below.

 19

Notice that there is a different amount of intersymbol interference that occurs when setting the
transmitter pll bandwidth to 250 kHz as compared to setting the received fp parameter to 250 kHz.
This is due to the fact that the transmit and receive filters are different in their order and bandwidth
characteristics. The transmit PLL filter is a second order lowpass with asymptotic bandwidth of 250
kHz (see Figure 5 of “PLL Design using the PLL Design Assistant Program” to understand the
meaning of asymptotic bandwidth), while the receive filter is a third order lowpass composed of three
cascaded first order sections that individually have 250 kHz bandwidth.
You might consider trying other values for the pll_bw parameter of the gmsk_pll_transmitter icon to
further observe its impact on intersymbol interference.

B. Phase Synchronization

• Within Sue2, double-click on the gmsk_pll_transmitter icon and then set the pll_bw
parameter to 2e6. After saving the changes, the Sue2 schematic of the gmsk_overall_system
cellview should appear as shown below.

 20

• Within CppSimView, click on the Run CppSim button to run the CppSim simulation.
• Replot the eye diagrams for signals ifilt and qfilt to verify that they look close to ideal as

shown below.

 21

• Within Sue2, double-click on the vco_quadrature icon and then change the phase_adj
parameter to 290 degrees. After saving the changes, the gmsk_overall_system cellview
should appear as shown below.

• Within CppSimView, click on the Run CppSim button to run the CppSim simulation.
• Replot the eye diagrams for signals ifilt and qfilt and observe that they now appear to be

impacted by intersymbol interference as shown below.

 22

We observe that the closing of the eye observed above is not due to intersymbol interference by
filtering, but rather by having the wrong phase setting when demodulating the I/Q signals. Therefore,
when doing coherent demodulation, as we are in this case, we see that one must appropriately select
the right phase offset in the receiver to get nice I/Q waveforms.

C. Transmitter and Receiver Noise

We will not provide many details related to noise in this document, but will rather simply point out
where to add primary noise sources within the transmitter and receiver of the given GMSK transceiver
simulation framework.

• Within Sue2, descend down into the gmsk_pll_transmitter icon by clicking on it and then
pressing the e key. The gmsk_pll_transmitter schematic should appear as shown below.

• As indicated by the circled items above, the primary noise sources in the transmitter are:
o Charge pump noise (left circles): this is currently set to zero. Check out the “PLL

Design using the PLL Design Assistant Program” for more information on the impact
of this noise source.

o VCO noise: this is currently set such that the VCO noise is -165 dBc/Hz at a 20 MHz
offset (which is essentially what is required for a GSM transmitter).

• Within Sue2, return to the gmsk_overall_system cell view by pressing Ctrl-e. Then descend
down into the gmsk_iq_receiver – its cellview should appear as shown below.

 23

• The overall noise source within the receiver is simply modeled as an equivalent input noise
source before the I/Q mixers. In practice, the equivalent input noise would primarily be a
function of noise in the LNA, mixers, and filters in the RF path (none of which are included
above). You might consider entering different values of noise_var by returning to the
gmsk_overall_system cellview (press Ctrl-e) and then double-clicking on the
gmsk_iq_receiver icon as shown below.

Design Overview of the PLL Transmitter

Let us now focus on calculation of the PLL loop filter parameters within the transmitter, which is
shown below for convenience. In particular, we will list the assumed parameter settings for the PLL,
provide a model for the impact of the I/Q mixing operation on the PLL, and then calculate the loop
filter parameters using the PLL Design Assistant program.

 24

A. Assumed Parameter Settings

We will assume that the following parameters of the PLL are set by application constraints:

• Reference frequency: 100 MHz
• Output frequency: 900 MHz
• Divide value: Nnom = 900 MHz/100 MHz = 9
• PFD structure: Tristate
• PLL order: 2
• PLL type: 1 (i.e., an integrator is not included within the loop filter)
• VCO: Kv = 30 Mhz/V with phase noise of -165 dBc/Hz at 20 MHz offset

o Note that the VCO phase noise is modeled as falling at 20 dB/dec across its entire
offset frequency range. While the phase noise of a practical VCO has a higher slope at
low frequency offsets, and eventually levels off at higher frequency offsets, the
approximation assumed here is adequate for illustrating the key points of simulating a
GMSK transceiver.

• Charge pump: Ich = 100 microAmps (a reasonable value for many applications – see “PLL
Design using the PLL Design Assistant Program” for more details on the tradeoffs associated
with setting the charge pump current). Note that we have set the charge pump noise to zero for
simplicity in this document.

• Simulation time step: Ts=1/9e9 (i.e., the sample rate is set to 10 times that of the highest
frequency, which is the VCO output).

Given the above, we would like to calculate the loop filter parameters to achieve a given PLL
bandwidth (i.e., pll_bw within the Sue2 schematic of gmsk_pll_transmitter).

B. Modeling

 25

Figure 3 displays a block diagram corresponding to the PLL portion of the transmitter. The system is
very similar to a classical integer-N PLL except for the inclusion of the limit amp and I/Q mixing
section. The limit amp can be ignored in our modeling effort (at least to first order) since it has an
output with the same zero-crossing values (i.e., phase) as its input, and the divider only responds to
zero-crossings (i.e., phase) at its input. The impact of the I/Q mixing section can be modeled as a
function of the phase of the transmitter output, Φout, and the phase of the I/Q generator, Φmod.

out(t)

Loop Filter

Reference
Frequency

vin(t)
PFD

N

90
oLimit

Amp

(100 MHz)

Icp H(s)

I=cos(Φmod)

Q=sin(Φmod)

sin(ωt+Φout)

I/Q Gen.

cos(ωt+Φout)

y(t)

Figure 4: Simplified block diagram of the PLL used within the GMSK transmitter.

To model the relationship between the output, y(t), and input phase signals, Φout and Φmod, of the I/Q
mixing section, we write out the I/Q mixing operation as

)cos()cos()cos()sin()sin()(modmodmod φφφφφφ −+=+++= outoutout wtwtwtty

The above expression reveals that the phase of the output of the I/Q section corresponds to the
subtraction between the phase of the transmitter output, Φout(t), and I/Q generator output, Φmod(t).
Therefore, we can represent the overall PLL portion of the transmitter with the linearized PLL model
shown in Figure 4 below. The I/Q mixer section is represented as a subtraction operation, and the
remaining PLL blocks are modeled as discussed in the “PLL Design using the PLL Design Assistant”
document. In the model, the divider value variations, n[k], have a value of zero since we are using an
integer-N approach, and the input reference phase, Φref[k], is also assumed to be zero since we are
ignoring reference noise at this point.

 26

Φdiv[k]

Φref [k]=0 K
V

jf

v
in

(t) Φout(t)
H(f)

1
N

NOM

2π z-1

1 - z-1n[k] = 0

T

1

Φn[k]

T

2π
α

E(t)
Icp

Φmod(t)

Divider I/Q Mixer

VCO

Tristate
PFD

(α = 1)
Charge
Pump

Loop
Filter

Figure 5: Linearized model of the PLL used within the GMSK transmitter.

By taking advantage of the zero value of several of the signals in Figure 4, we obtain the simplified
model shown in Figure 5. Here we have also parameterized the loop filter, H(f), as a first order
transfer function. Given the values that have already been chosen for the PLL, there are only two free
parameters left – gain and fp. The values of these parameters can be determined by using the PLL
Design Assistant program.

K
V

jf

vin
(t) Φout(t)

1
T N

NOM

T

2π
α

E(t)
Icp

Φmod(t)

Divider
I/Q Mixer

VCO

Tristate
PFD

(α = 1)
Charge
Pump

Loop
Filter

gain

1 + jf/fp

Figure 6: Simplified PLL model.

C. Loop Filter Design using the PLL Design Assistant

Examination of page 10 of “PLL Design using the PLL Design Assistant Program” reveals that the
gain parameter of the loop filter is related to the other PLL parameters as

cpv

NOM

IK
N

Kgain
α

=

where K corresponds to the desired overall open loop gain of the PLL. The desired overall open loop
gain is, in turn, a function of the desired bandwidth of the PLL. We shall determine the value of K by
using the PLL Design Assistant program.

 27

• Click on the PllDesign icon in Windows to start the PLL Design Assistant.
• Set the value of fo to 1e6, and then click on the Apply button. The PLL Design Assistant

should now appear as shown below.

• Now change the value of fo to 2e6 and again click on the Apply button. You should notice
that the values of K and fp are doubled such that they become 8.884e6 and 2.828e6,
respectively. We therefore surmise that we can relate the bandwidth of the PLL, fo, to its open
loop gain, K, as

442.4_ ⋅= bwpllK
where we have defined pll_bw = fo (note that we use pll_bw within the Sue2 schematic of the
gmsk_pll_transmitter cell as shown above).

Given the above, we can express the gain of the loop filter as

61006301
9442.4_

−⋅⋅
⋅=

ee
bwpllgain

Similarly, we can express the pole value of the loop filter as

414.1_ ⋅= bwpllfp

If one looks at the parameters for the loop filter within the Sue2 schematic of the
gmsk_pll_transmitter cell, you will this notice this very parameterization.

Noise Analysis of the Unmodulated PLL using the PLL Design Assistant

We will now calculate the impact of VCO noise on the unmodulated PLL transmitter output. The
resulting calculation will be compared to simulated results obtained earlier in this document.

 28

• Within the PLL Design Assistant, set the value of the following parameters as specified

o fo = 2e6
o ref. freq = 100e6
o out freq. = 900e6
o VCO noise = -165 dBc/Hz at freq. offset = 20e6

• Click on the Noise Plot radio button
• Set the axis limits to: 1e3 20e6 -180 -130
• Click on the Apply button

The PLL Design Assistant and its corresponding output plot should now appear as shown below

 29

Figure 7: Calculated phase noise of the unmodulated PLL transmitter.

One should now compare the above calculated phase noise plot to the simulated one shown in Figure
3 on page 15 of this document. Note that, for simplicity, we have ignored other noise sources in the
PLL such as charge pump noise. It is fairly straightforward to analyze the impact of such noise within
the PLL Design Assistant, and include it within CppSim when seeking a more realistic system
description.

The Need for the gmsk_limitamp Module

Consider now the fact that we have demonstrated a close comparison between the calculated and
simulated noise of the PLL transmitter, and have done so with a coarse simulation time step that is
only a factor of ten higher than the transmitter output frequency. The secret of our success is the
application of an area conservation protocol referenced below, which, in turn, relies on the inclusion
of the gmsk_limitamp block within the system simulation. We briefly describe the relevant issues on
this topic in this section.

• Within Sue2, go to the gmsk_pll_transmitter cellview and then notice the presence of the
gmsk_limitamp icon as shown below.

 30

The function of the gmsk_limitamp block is to convert the sine wave output of the I/Q mixing section
to a square wave signal that follows the area conservation protocol described in “Fast and Accurate
Behavioral Simulation of Fractional-N Synthesizers and other PLL/DLL Circuits” (DAC 2002, PDF
download available at http://www-mtl.mit.edu/researchgroups/perrottgroup/publications.html). In
particular, the divider_ideal block shown above requires that its input adhere to the area conservation
protocol in order to avoid inducing quantization noise in time due to the relatively large time step of
the simulator. The impact of the area conservation protocol on the output square wave and its
relationship to the input sine wave of the gmsk_limitamp block are seen in the plot below.

 31

To better understand the functionality of the gmsk_limitamp block, it is recommended that you take a
look at its module description.

• Double-click the gmsk_limitamp block on your schematic and left-click the Edit CppSim
Code button.

• Within the Emacs window that opens up:
o You should see the following segment of code:

…………………………..
module: gmsk_limitamp
parameters:
inputs: double in
outputs: double_interp out
……………………………

o Notice that the output has type double_interp – this indicates to CppSim that the
output follows the area conservation protocol. CppSim will actually treat the output as
type double during the simulation, but uses the double_interp label to perform error
checking before simulation to insure that the area conservation protocol is adhered to
where demanded (such as at the input of the divider_ideal module).

o If you look in the code: section of the gmsk_limitamp (which directly follows the
code above), you will see that the area conservation protocol is fairly straightforward to
realize. We simply perform first order interpolation of the input sine wave signal to
estimate the location of its zero crossing values, and then use the estimated zero
crossing values to generate the area-conserving output square wave signal.

Overview of the I/Q Generator

We will now provide further details on the implementation of the I/Q generator block, which is
highlighted below in the gmsk_pll_transmitter cellview. In particular, we will describe how
clocking and filtering operations are implemented within its blocks.

 32

• Descend down into the gmsk_dig_iq_generator cellview in Sue2. The following schematic
diagram should appear:

A. Implementing Clocking Within Modules

CppSim runs through the code for each block every time step of the simulation. However, it’s often
the case that certain blocks should update their contents at a lower rate based on a clock signal. To
illustrate how such clocking functionality is achieved within modules, let us examine the code for one
of the blocks within the I/Q generator shown above.

• Double-click on the gmsk_data_generator block and then left-click on the Edit CppSim
Code button.

• Within the Emacs windows that appears. You should see the following code:

 33

……………………………………………………………
module: gmsk_data_generator
parameters: int enable, int data_period
inputs: double clk
outputs: double out
classes: Rand datagen("bernoulli"), EdgeDetect clkedge()
static_variables: int count
init:
datagen.reset();
count=1;
if (enable == 1)

 out = 1.0;
else

 out = 0.0;
code:
if (clkedge.inp(clk))

 {
 if (count == data_period)
 {
 count=0;
 if (enable == 1)
 out = datagen.inp();
 else
 out = 0.0;
 }
 count++;
 }
 ………………………………………………………………
Notice that the classes: section declares an EdgeDetect object called clkedge. The function of
clkedge is to take on a value of 1 when a positive edge is encountered at its input, and to output 0
otherwise. In the code: section, the clkedge object is then used to prevent execution of the module
code unless a positive clk edge is encountered. Note that if it is desired to execute the module code on
a negative edge instead, one would change the statement

if (clkedge.inp(clk))
to

if (clkedge.inp(-clk))

B. Creating the Gaussian FIR Filter

The gaussian_transmit_filter block within the gmsk_dig_iq_generator cellview has the task of
filtering the data sequence with an FIR Gaussian filter whose discrete-time impulse response p[k], is
formulated as

2
1

2
][

⎟
⎠
⎞

⎜
⎝
⎛−

= σ

σπ

k

ehkp

where

T
T

BT
d

d π
σ

2
178.1

=

 34

• Again, double-click on the gaussian_transmit_filter block and then left-click on the Edit
CppSim Code button.

• You should see the following code segment:
 ……………………………………………………………………..

module: gaussian_transmit_filter
parameters: double h, int data_period, int filt_periods, double bt
inputs: double in double clk
outputs: double out
classes: Filter filt("1","1"), List list1(), EdgeDetect clkedge()
static_variables:
init:
//// error checking removed here for simplicity ////
double sigma, prefix, data_period_r, cur_val;
int half_filter_length,i;

data_period_r = (double) data_period;
sigma = 1.178*data_period_r/(bt*2.0*pi);
prefix = h/(2.0*sqrt(pi)*sigma);
half_filter_length = (data_period*filt_periods)/2;
for (i = -half_filter_length;i <= half_filter_length; i++)

 {
 cur_val = prefix*exp(-(((double) i)/sigma)*(((double) i)/sigma));
 list1.inp(cur_val);
 }

// list1.save("filt_vals.dat");
filt.set(list1,"1");
code:
if (clkedge.inp(clk))

 {
 filt.inp(in);
 out=filt.out;
 }
 ……………………………………………………………………..

There are two things to note about the above code:

1. The FIR filter is realized using the Filter class. In particular, within the classes: section, we
declare filt as a Filter object whose numerator and denominator values are 1 (i.e., it is
initialized as a unity gain block with flat frequency response). Within the init: section, we
then compute the FIR coefficients based on the above equation, and store their values into a
List object named list1. The list values are then transferred into the numerator transfer
function of filt (while retaining a denominator of 1) through the statement

 filt.set(list1,”1”);
2. The time step of the above filter is set according to the input clk signal rather than the

simulation time step, Ts, by using the clocking method discussed in the previous section. In
particular, within the code: section, the statement

filt.inp(in);

 35

is only executed on rising edges of the clock. Since the filt object only updates its contents
when its above input function (i.e., the statement above) is executed, we have set the time step
of the filt object to the period of the clk signal (rather than the simulator time step, Ts, which
would normally be the case if the input function of filt were executed every time step of the
simulation).

Conclusion

In this document, we have covered basic issues related to behavioral simulation of a simple GMSK
transceiver example using CppSim. In particular, we have introduced the reader to the tasks of
running CppSim simulations, plotting the I/Q signals in the time domain, examining the output
spectrum of the transmitter under both modulated and unmodulated conditions, and viewing the
impact of nonidealities such as intersymbol interference, poor phase synchronization, and noise. We
also covered basic design calculations for the PLL within the transmitter, showed close
correspondence between the calculated and simulated noise performance of the unmodulated
transmitter, and provided details of how that close correspondence was achieved with a coarse time
step for the simulation. Finally, implementation details of such operations as clocking of blocks and
realization of FIR filters were provided within the context of the I/Q generator block used within the
transmitter.

