
FRACTIONAL-N FREQUENCY SYNTHESIZERS

provide high-speed frequency sources that can

be accurately set with very high resolution—a

valuable feature for many communication sys-

tems. Figure 1a illustrates a fractional-N synthe-

sizer, which includes a

� phase-frequency detector (PFD),

� charge pump,

� loop filter,

� voltage-controlled oscillator (VCO), and

� frequency divider dithered between integer

values to achieve fractional divide ratios.

At the Microsystems Technology Laboratory at

MIT, we have developed two techniques that

allow fast and accurate simulation of both

dynamic and noise performance of fractional-

N synthesizers at a detailed behavioral level.

We incorporated these techniques into a cus-

tom C++ program to simulate the dynamic and

noise performance of a prototype Σ-∆ frequen-

cy synthesizer.

This class of fractional-N synthesizers dithers

the divide value according to the output of a Σ-

∆ modulator.1 Such dithering ensures high fre-

quency resolution,1 but also has the negative

effect of introducing quantization noise, which

degrades the overall phase-locked loop (PLL)

noise performance. It can be very helpful to sim-

ulate the effects of this quantization noise, along

with other noise sources (shown in Figure 1b)

in the PLL, on overall PLL performance.

Simulating the synthesizer’s dynamic response

to variations of the Σ-∆ input can also help eval-

uate stability and characterize the system’s per-

formance when it is used as a transmitter.2

The problem
Fast behavioral simulation of fractional-N

synthesizers is challenging for several reasons.

First, the synthesizer’s high output frequency

(often in the gigahertz range) imposes a high

simulation sample frequency for traditional

simulators. Unfortunately, the overall PLL

dynamics have a bandwidth that is typically

three to four orders of magnitude lower than
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Two techniques are presented that allow fast and

accurate simulation of fractional-N synthesizers. 

A uniform time step allows implementation of

these techniques in various simulation

frameworks, such as Verilog, Matlab, and C or

C++ programs. The techniques are also

applicable to the simulation of other PLL systems,

such as clock and data recovery circuits.
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the output frequency (often 100 kHz to 1 MHz

of bandwidth compared to 1 to 10 GHz for the

output frequency). Thus, traditional simulators

take a long time to compute the system’s

dynamic response, because they must process

many simulation samples. This is a classical

problem in the simulation of PLL circuits.

Second, for noise simulation, the fractional-N

synthesizer adds an additional constraint: Its

behavior is nonperiodic in steady state because

of the divide value’s dithering action. Dithering

prevents the use of fast methods developed for

periodic steady-state conditions,3 as used with

simulators such as Cadence’s SpectreRF.

Accurate simulation of fractional-N synthe-

sizers is difficult because the synthesizer’s con-

tinuous-time (CT) signals must be simulated in

discrete time (DT). CT-to-DT conversion intro-

duces numerical noise for classical simulation

techniques with a constant time step. The key

signal for introducing such noise is the PFD out-

put. The standard approach for converting the

CT PFD output to a DT sequence is to apply the

sampling operation shown in Figure 2a.4
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Figure 1. Σ-∆ synthesizer with associated signals (a) and spectral densities of phase-

locked loop (PLL) noise sources (b). In the figure, ref(t) is the input frequency reference,

e(t) is the phase-frequency detector (PFD) output, v(t) is the voltage-controlled oscillator

(VCO) input voltage, out(t) is the VCO output, div(t) is the divided-down output frequency,

Nsd[m] is the input to the Σ−∆ modulator, and N[m] is the instantaneous divide value.



Unfortunately, this approach effectively quan-

tizes the location of the PFD edges, according

to simulation sample period Ts. You can rea-

sonably assess the PLL’s dynamic performance

by making Ts sufficiently small. However, the

resulting quantization noise overpowers the sig-

nals’ true noise characteristics and prevents

proper noise analysis of the overall PLL.

To solve the quantization noise issue,

researchers have developed event-driven simu-

lation methods for classical frequency synthesiz-

ers that align simulation samples precisely to the

PFD output’s edges.5-7 Although such methods

can achieve higher accuracy, they are generally

more complicated than uniform-time-sample

methods. Designers must either develop closed-

form calculations of the loop-filter step response

and insert them into the simulation or incorpo-

rate iterative methods, such as those used in

Spice or Verilog-A, into the simulator to calculate

the loop-filter response with varying time steps.

The former is tedious and typically restricted to a

low loop-filter order, so most recent methods

focus on the latter.5-7 This approach minimizes the

designers’ up-front work, but the simulation time

is often longer due to the iterative calculations

performed at each time step. Unfortunately,

designers have not yet successfully applied event-

driven simulators to the noise analysis of frac-

tional-N frequency synthesizers, where the divide

value varies dynamically.

Our approach
Our techniques use a uniform sample peri-

od and a noniterative computation of the sam-

ple values for the signals in the system. A

uniform sample period lets designers readily

examine the simulator results in the frequency

domain without resampling. The noniterative

computation makes the techniques suitable in

mainstream simulators such as Verilog, VHDL,

Matlab, and custom C or C++ programs.

The first technique uses area conservation

to accurately represent the CT PFD output with

a DT sequence. The second dramatically

reduces simulation sample frequency, thus

allowing a longer sample period, by including

the divider implementation in the VCO simula-

tion module.

Accurate PFD discretization
To accurately discretize PFD output e(t), we

view this signal as a series of rectangular pulses
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with a height of 1 or 0, with width

and time offsets that vary according

to the location of PFD edges, as Fig-

ure 2b shows. For rectangular puls-

es not associated with edges, the

width corresponds to simulation

sample period Ts. For rectangular

pulses at edge boundaries, the pulse

width varies between 0 and Ts. In

either case, these pulses look like

impulses to the loop filter.  There-

fore, we represent the correspond-

ing DT PFD signals, e[n], as samples

having an amplitude proportional

to the area of the respective rectan-

gular pulse in that time sample inter-

val.8 Each pulse’s area corresponds

to its associated timing parameter,

ε. A later section explains how to

calculate ε for each pulse.

Given the PFD output discretiza-

tion in Figure 2b, we can represent

the CT loop filter dynamics with a

DT filter using either the impulse

invariance or bilinear transform

methods.9 These representations

allow noniterative computation of

the loop filter dynamics. Figure 2c

illustrates an example DT loop-filter impulse

response, along with a corresponding DT PFD

signal. To simplify the analysis, we ignored the

charge pump; however, you can include its

effect by scaling the PFD output by the value of

the charge pump current. In the example, the

loop filter is implemented as a DT filter with an

impulse response corresponding to samples of

the loop filter’s CT impulse response, h(t).

Implementation of PFD
Now that I’ve shown how to use area con-

servation to accurately represent the PFD out-

put signal as a DT sequence, let’s examine the

practical issue of implementing this technique

in simulation code. Of particular concern is the

ability to encompass a wide variety of PFD

topologies. As Figure 3 shows, computing e[n]

for a given PFD topology requires passing the

transition information along, and using primi-

tive elements such as registers and logic gates

to process this information. This computation

must also support basic operations such as cal-

culating a signal’s complement.

As Figure 4 shows, we can achieve the com-

plement operation as a sign change by modify-

ing the representation of e[k] such that it

alternates between –1 and 1, as opposed to 0

and 1. We accomplish this modification

through the transformation, e[n] → 2e[n] – 1.

Transferring transition information through

primitives is straightforward, as Figure 5 (next

page) shows for a register and representative

AND logic gate. For the register, the clock signal

contains the relevant timing information.

Specifically, whenever a transition occurs at the

register’s output, the location of the clock’s rising

edge sets that transition’s location in time. As

Figure 5 shows, transferring this information to

the register output involves simply passing along

the clock transition value when the output tran-

sitions in the same direction. When the output

transitions in the opposite direction, the com-

plement of the clock transition value should be
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passed on. For the AND gate, either input can

cause the output to transition. As the figure illus-

trates, it is straightforward to determine which

input is causing the transition and then appro-

priately pass this input’s edge location value to

the AND gate’s output. Similar arguments apply

to more complicated registers that include set

and reset functions, and other primitives such as

OR and XOR gates.

Fast computation
To improve computation speed, we set simu-

lation sample period Ts according to the refer-

ence frequency rather than the much higher VCO

frequency. Doing so usually achieves more than

two orders of magnitude speedup in the PLL sim-

ulation time because the VCO frequency is typi-

cally higher than the reference frequency by this

amount. We achieve this goal by combining the

VCO and divider into one computation block.

To explain, let VCO phase Φvco(t) be the inte-

gral of the VCO’s output frequency. The output

frequency is adjusted about its nominal value

by a function that depends on its input voltage,

so the VCO phase becomes

(1)

where v(t)is the VCO input voltage, Kv is the VCO

gain (in hertz per volt), fc is the nominal VCO fre-

quency when v(t) = 0, and Φvn(t) is the VCO noise

(illustrated in Figure 1b). Note that modeling a

nonlinear relationship from the input voltage to

the VCO frequency would require multiplying the

VCO input by a polynomial gain expression

rather than just Kv. In general, Φvco(t) looks like a

ramp in time, and the VCO output’s rising edges

occur for each 2π increment of this output.

VCO simulation simply involves discretizing

equation 1 as

(2)

where n is the time index of the simulator. To

prevent loss of information in the CT-to-DT con-

version, 1/Ts must be higher than twice the high-

est frequency content of v(t) and Φvn(t),

according to the Nyquist theorem.9 Practically

speaking, meeting the sampling requirements for

the PFD output will often satisfy this condition.

Rising edges of the divider output occur

whenever the VCO output completes N[m] ris-

ing edges, where N[m] corresponds to the

instantaneous divide value. Therefore, as Figure

6a shows, VCO phase Φvco(t) completely speci-

fies the location of the divider edges. Hence, the

value of εk at the divider output’s transition

points can be determined entirely by the com-

puted VCO phase, as Figure 6b shows for first-

order interpolation.6 It suffices to choose a

sample rate for the VCO phase computation

according to the divider frequency, which

equals the reference frequency, rather than the

far higher VCO frequency.

Results
Using our techniques, I now discuss the

results of simulating the dynamic behavior and

noise performance of a prototype synthesizer.2

The simulator consists of a custom C++ pro-

gram employing the techniques. To verify its

accuracy, simulated noise is compared to mea-

sured plots.

Figure 1a gives a block diagram of the pro-

totype system. Both dynamic and noise simu-

lations included the noise sources shown in

Figure 1b. We used a white-noise source refer-

enced to the VCO input to represent the VCO
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noise.2 Figure 7 shows the  noise

sources included in the simula-

tion. We computed the variances

of the charge-pump noise sources

from Hspice simulations, and the

variance of the VCO noise source

from VCO measurements.

Relevant characteristics of the

prototype include

� a 20-MHz reference frequency,

� 84-kHz PLL bandwidth,

� VCO with fc = 1.84 GHz and Kv =

30 MHz/V,

� second-order Σ-∆ modulator,

� charge pump that outputs ± 1.5

µA, and

� nominal divide value of 92.3.

The prototype also includes the

PFD topology shown in Figure 3,10

and a lead/lag filter with transfer

function

where j is √−1, and w is frequency

in radians. The loop-filter zero fre-

quency, fz, is 11.6 kHz; its pole fre-

quency, fp, is 127.2 kHz; and its

integrator capacitance, C3, is 30 pf.

The simulation sample fre-

quency was 1/Ts = 400 MHz, a fac-

tor of 20 higher than the reference

frequency. The bilinear transform

was used to convert the CT loop fil-

ter to DT.9 All simulations were run

on a 650-MHz Pentium III laptop.

First, we consider dynamic behavior. Figure

8a (next page) shows the simulated VCO output

frequency constructed from the simulated VCO

input. The outputs are responses to variations at

the Σ-∆ modulator’s inputs (step and ramp func-

tions). The step size was chosen large enough

to knock the synthesizer out of frequency lock,

to illustrate the nonlinear reaction of the PLL.

The corresponding oscillations in the VCO out-

put frequency were due to cycle slipping before

the VCO became frequency locked again. The

subsequent ramp in divide value illustrates the

synthesizer’s high resolution as we varied its out-

put frequency over a 40-MHz range. For this sim-

ulation, the custom C++ simulator computed

260,000 time steps in less than 5 seconds.

Next, we consider how noise affects PLL

behavior. Figure 8b shows a noise simulation of

the prototype, constructed from the simulated

VCO input, with the Σ-∆ modulator input held

constant. The plot shows the simulated output
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noise spectral density, with simulation sample

frequency 1/Ts set to 20 times the reference fre-

quency. The simulated phase noise agreed

quite well with the measured results, which are

from an earlier work.2 The larger discrepancy at

frequencies close to 100 kHz probably comes

from not modeling the charge pump’s nonideal

characteristics, such as duty cycle offset and

transient dynamics. You could, of course,

include such effects in the given framework.

However, even though the simulation ignored

these effects, its results were still quite accurate.

For this simulation, the custom C++ simulator

computed 5 million time steps in

80 seconds.

Application to other
circuits

We can apply the presented

transition framework for discretiz-

ing the PFD output of other PLL

circuits to achieve accurate simu-

lation results. For example, con-

sider the clock-and-data-recovery

(CDR) circuit shown in Figure 9a.11

This circuit reconstructs the clock

associated with input data by

appropriately adjusting a VCO’s

phase and frequency. The struc-

ture is essentially a PLL with a

phase detector designed to handle

the random transitions of the input

data sequence.

Figures 9b and 9c illustrate two

popular phase detectors used in

CDR structures: Hogge and bang-

bang.11 Applying the Hogge detec-

tor leads to linear PLL dynamics,

whereas the bang-bang detector

leads to nonlinear PLL dynamics.

In both cases, the phase detector

consists of latches, registers, and

XOR gates, and encodes phase

error information using pulse

width modulation (the bang-bang

pulse width is quantized to one

clock period). Therefore, issues

associated with discretizing the

CDR phase detector output are

essentially the same as those for

frequency synthesizers. We can, in fact, achieve

accurate simulation results for CDR systems by

applying the discretization technique present-

ed here.

Using this technique, Figure 10 plots the sim-

ulated dynamic response of two different CDR

structures: one with the Hogge detector and the

other with the bang-bang detector. Table 1

(page 82) summarizes each CDR structure’s rel-

evant characteristics. We chose the bang-bang

step size to achieve steady-state jitter compara-

ble to the Hogge-based CDR structure. The

Hogge-based CDR’s dynamic response is expo-
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Figure 8. Simulated dynamic response of the synthesizer output to the Σ-∆
modulator input (a), and simulated synthesizer phase noise compared with

measured synthesizer noise (b).
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nential, as expected for a PLL with linear

dynamics. The CDR structure with the bang-

bang detector is nonlinear, allowing fast elimi-

nation of the initial phase error. In both cases,

the steady-state jitter was around 3 × 10–3 unit

intervals (that is, 3 mUI). This jitter level is far

smaller than the simulator’s 16.7-mUI time step

(determined as the ratio of 2.5 GHz to 15 GHz).

Thus, our discretization technique lets design-

ers use a relatively coarse simulation period Ts

while still achieving fine resolution in calculat-

ing the CDR jitter performance.

THESE RESULTS SHOW that the presented tech-

niques appear very promising in estimating the

noise and dynamic behavior of phase-locked

loops at an ideal behavioral level. Future work will

focus on representing nonideal characteristics in

circuit components in the presented simulation

framework, and implementing the technique in

the Verilog language. We are also investigating

methods of using this simulation framework to

estimate the noise impact of digital circuits on

phase-locked loops embedded in ICs.

The “Progress in analog-circuit modeling

and simulation” sidebar gives another per-

spective on the challenges involved in simulat-

ing mixed-signal circuits. �
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Table 1. Properties of two simulated CDR structures.

Property CDR with Hogge detector CDR with bang-bang detector

Data rate (Gbits/s) 2.5 2.5

Locked VCO frequency (GHz) 2.5 2.5

PLL bandwidth (MHz) 1 NA

VCO noise at 1 MHz (dBc/Hz) –100 –90

Sample rate, 1/Ts (GHz) 15 15

No. of time steps 500,000 300,000

Computation time (s) 5 3
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Numerical simulation of mixed-signal circuits—
whether analog or digital, RF or base band—is
challenging. Difficult issues include circuit com-
plexity, large differences in the simulation time
scale, and mixing of time and frequency domain
behaviors. Recently, researchers have made con-
siderable progress in analog, mixed analog-
digital, and multilevel analog simulation. Several
commercial solutions are available that simulate
analog and mixed-signal circuits at the device
level, sometimes with additional RF functionality.

Simulators have also begun allowing simulation
at higher abstraction levels, such as macromodel,
behavioral, and functional. Top-down design
methodologies need higher-level models to
describe the circuits’ pin-to-pin behavior rather than
its internal structural implementation. Moreover, ver-
ifying entire integrated systems is too computation-
ally complex to allow a full device-level simulation.
Finally, when providing analog IP macrocells for, or
using them in, a system on a chip, designers must
accompany the virtual component with an exe-
cutable model that efficiently models its pin-to-pin
behavior. Such a model is necessary for system-
level design and verification. Standardized mixed-
signal hardware description languages (HDLs),
such as VHDL-AMS and Verilog-AMS, can help.
But generating models for analog designs is still a
problem because today’s designers are not skilled
at this and no systematic modeling approaches
have been developed yet. In fact, it may prove the
biggest hurdle for the adoption of these high-level
modeling methodologies and analog HDLs in

industrial design practice. Automatic generation of
analog models is thus a very active research topic.

One of the most difficult analog blocks to simu-
late is the phase-locked loop (PLL), or frequency
synthesizer, because of its combination of high-
frequency oscillator signals (imposing small time
steps in Spice) and relatively long-term phenome-
na such as acquisition and locking.1-2 For several
years, researchers have applied faster, simplified
simulation techniques—for example, by using lin-
earized models—and more general nonlinear
behavioral modeling methods to synthesizers. In
recent years, fractional-N synthesizer architectures
have been introduced. These use a Σ-∆ modulator
to dither the divide value. The article by Perrott pre-
sents techniques for fast and accurate simulation
of dynamic performance and noise effects for frac-
tional-N synthesizers and other PLL circuits at a
detailed behavioral level. These techniques allow
the use of a uniform time step. Perrott and his col-
leagues at MIT’s Microsystems Technology
Laboratory have incorporated them into an effi-
cient, custom C++ simulator.
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