A Clockless, Multi-Stable, CMOS Analog Circuit

Mohammad Alhawari¹ and Michael H. Perrott²
¹Khalifa University, Abu Dhabi, UAE
²Masdar Institute, Abu Dhabi, UAE (Now at Silicon Laboratories, Nashua, NH, USA)

Abstract— A CMOS analog circuit topology is presented that provides a number of stable operating points based on a laddered inverter quantizer (LIQAF) circuit. An input voltage sets the initial voltage state value when a CMOS transmission gate is turned on, and the voltage state then settles to the nearest stable operating point once the CMOS transmission gate is turned off. The proposed analog circuit achieves its stable operating levels through nonlinear, continuous-time feedback with a circuit that requires only a single supply voltage. An IC prototype demonstrates a 10-level version of the multi-stable circuit with an area of 0.015mm² in 0.18µm CMOS and current consumption of 300µA at 1.4V and <45µA at 1V supply for a pair of the multi-stable circuits.

Keywords— laddered inverter, LIQAF, multi-stable analog circuit, static analog memory, nonlinear analog circuit, analog neural network, DAC trimming circuit, quantizer, storage element

I. INTRODUCTION

Multi-stable analog circuits have been a topic of interest as a means of better understanding biological systems [1] and for storing parameter values within analog neural networks and fuzzy systems [2]. In addition, such circuits could also be useful for analog trimming of current sources for digital-to-analog converters (DACs) [3] and charge pumps used within analog phase-locked loop (PLL) circuits.

A variety of such “analog memory” circuits have been reported in the literature [4–8], with a common approach being the storage of charge on a capacitor through a sample-and-hold circuit [9] as shown in Figure 1(a). Unfortunately, charge leakage in such systems leads to very limited hold times of a given voltage state. Refresh techniques, which require a clock signal, have been suggested in [7] and [8] to increase the hold time of the charge on a capacitor, but involve significant design efforts in maintaining the charge value with low error. Alternatively, an analog-to-digital converter (ADC) and digital-to-analog converter (DAC) are combined to achieve indefinite hold times [2] as shown in Figure 1(b), but multiple current branches are utilized for the ADC which leads to increased current consumption. A clockless, multi-stable, CMOS analog circuit [4], as shown in Figure 1(c), achieves a relatively simple implementation, but requires multiple reference voltages.

Similar to the approach in [4], the “analog memory” circuit presented in this paper utilizes a nonlinear analog circuit to achieve multiple stable operating points. However, rather than using inverters in combination with multiple reference voltages as shown in Figure 1(c), a recently introduced Laddered Inverter Quantizer/Amplifier/Filter (LIQAF) circuit [10], [11] is employed that operates using only a single supply voltage. The LIQAF circuit is combined with a transmission gate and nonlinear feedback structure similar to [4] in order to achieve the desired multi-stable behavior. Overall, the proposed structure requires four more transistors than [4] to achieve four levels (as shown in Figure 1(c)), but has the same incremental cost as [4] in that it requires four transistors for each additional level. The proposed design offers advantages of allowing low voltage operation and simplified wiring complexity since multiple reference voltages are not required.

The reminder of this paper is organized as follows. Section II provides an overview of the LIQAF circuit. Section III presents the proposed multi-stable analog circuit. Section IV presents the measured results of the prototype IC. Finally, Section V concludes.

II. LIQAF CIRCUIT

To gain an understanding of the LIQAF circuit, consider the simplified structure shown in Figure 2 in which only two-output levels are implemented. As indicated in Figure 2, we can view this circuit as a combination of two CMOS inverters that have different ratios of NMOS versus PMOS gate lengths, which yields the shifted DC characteristics shown in the figure. To explain, note that when \(V_{\text{in}} \) is low and both outputs are high, transistor \(M_1 \) is inactive such that \(V_{\text{out}} \) transitions with increasing \(V_{\text{in}} \) according to a CMOS inverter characteristic with one NMOS device and two series PMOS devices. In contrast, when \(V_{\text{in}} \) is high and both outputs are low, \(M_2 \) is inactive such that \(V_{\text{out}} \) transitions with decreasing \(V_{\text{in}} \) according to a CMOS inverter characteristic with two series NMOS devices and one PMOS device. Since \(V_{\text{out}} \) cannot transition high unless \(V_{\text{out}} \) is also high, and \(V_{\text{out}} \) cannot transition low unless \(V_{\text{out}} \) is also low, the LIQAF circuit provides guaranteed monotonicity in the quantizer characteristic regardless of the presence of mismatch. Note that one should not confuse the curves shown in Figure 2 with the

Fig. 1 Previous analog memory circuits: (a) storing charge on a capacitor with a sample-and-hold circuit, (b) combining an ADC and DAC, (c) utilizing a multi-stable analog circuit [4].
The number of LIQAF outputs can be readily increased, as depicted in Figure 3 for a ten-output example. As shown in the figure, SPICE simulations indicate robust operation of the LIQAF circuit across a wide range of supply voltages. The number of stable operating points of the proposed multi-stable circuit is increased by using a LIQAF circuit with a greater number of outputs. As shown in Figure 5, ten stable operating points are achieved in the prototype circuit by using a ten-output LIQAF, as was shown in Figure 3, and correspondingly extending the nonlinear feedback circuit. Note that increasing the number of stable operating points does not lead to a proportional increase in current since all of the devices share the same current. In practice, the circuit will typically encounter some amount of load resistance, such as the input impedance of the test instrument used to measure the voltage state of the circuit as indicated in Figure 5. Fortunately, the nonlinear feedback accommodates such resistive loading so long as the load resistance is reasonably high in value, though the value of the load resistance will have an impact on the operational voltage supply range of the circuit. Overall, one should note the relative simplicity of the proposed circuit in achieving multi-stable operating point behavior.

Figure 5 indicates relatively large device widths being used within the circuit, which were chosen in order to facilitate easy testing of the device since the larger widths allow for less impact from the loading effect of the test instrument. SPICE simulations indicate functionality of the 10-level circuit at near minimum device widths, so that area and power could likely be significantly reduced compared to the prototype circuit presented in this paper. Also, the LIQAF circuit can be potentially expanded beyond ten outputs in order to increase the number of stable operating points.
IV. MEASURED RESULTS

The prototype multi-stable circuit shown in Figure 5 was fabricated in a 180nm CMOS process and has an area of 0.015mm² as indicated in the die photo shown in Figure 6. Operation of the circuit was confirmed over a 1.3V to 1.8V supply range in the presence of the oscilloscope 1MΩ load resistance, and over a 1.0V to 1.5V supply range in the presence of the multimeter 10MΩ load resistance. Beyond these voltage ranges, the primary mode of failure of the circuit is to lose stability points at the ends of its range, as will be discussed later. For simplicity, most of the measurement results will be shown using a supply voltage of 1.4V, which is the mid-point between the 1.3V to 1.5V operational range for both load resistance cases.

Figure 7 shows the measured DC characteristic at each of the LIQAF outputs (i.e. \(V_{out1} \) to \(V_{out10} \)) for the circuit shown in Figure 5 assuming 1.4V supply voltage. These measurements were performed by utilizing switches, which are not shown for simplicity, that individually connect each LIQAF output to a test pin on the prototype IC. The results shown in Figure 7 confirm the quantization behavior of the LIQAF circuit despite the presence of loading from the nonlinear feedback network.

Figure 8 shows measured transient waveforms of node \(V_q(t) \) for the overall multi-stable circuit shown in Figure 5 assuming 1.4V supply voltage and oscilloscope loading of 1MΩ. This figure confirms settling to the nearest stable operating point as the transmission gate is turned off. Note that the input voltage is swept from 0 to 1.4V in Figure 5, but the output is limited to a maximum value of 1.3V due to contention between the nonlinear feedback and the transmission gate.

Figure 9 shows the measured DC characteristics of the multi-stable analog circuit shown in Figure 5 for three values of supply voltage assuming multimeter loading of 10MΩ. At a supply voltage of 1.8V, we see the soft nature of failure when operating beyond the valid supply range, which is the loss of the top/bottom stability points (i.e., \(V_{out1} \) and \(V_{out10} \)) in being active. In this case, there is one missing level corresponding to...
V. CONCLUSIONS

This paper presented a multi-stable analog CMOS circuit that is achieved by combining a LIQAF circuit with a transmission gate and nonlinear feedback within a standard 180nm CMOS process. This approach leads to a relatively simple circuit implementation that requires only a single supply voltage rather than multiple reference voltages. The proposed multi-stable circuit could be useful in setting parameter values in analog neural network and fuzzy logic systems, as well as for analog circuit trimming of current sources for DACs and PLLs.

VI. ACKNOWLEDGMENTS

The authors thank Berkeley Design Automation for use of their AFS simulator.

REFERENCES