Short Course On
Phase-Locked Loops and Their Applications
Day 4, AM Lecture

Digital Frequency Synthesizers

Michael Perrott
August 14, 2008

Copyright © 2008 by Michael H. Perrott
All rights reserved.
Why Are Digital Phase-Locked Loops Interesting?

- PLLs are needed for a wide range of applications
 - Communication systems (both wireless and wireline)
 - Digital processors (to achieve GHz clocks)
- Performance is important
 - Phase noise can limit wireless transceiver performance
 - Jitter can be a problem for digital processors
- The standard analog PLL implementation is problematic in many applications
 - Analog building blocks on a mostly digital chip pose design and verification challenges
 - The cost of implementation is becoming too high ...

Can digital phase-locked loops offer excellent performance with a lower cost of implementation?
Integer-N Frequency Synthesizers

- Use digital counter structure to divide VCO frequency
 - Constraint: must divide by integer values
- Use PLL to synchronize reference and divider output

Output frequency is digitally controlled
Fractional-N Frequency Synthesizers

- Dither divide value to achieve fractional divide values
 - PLL loop filter smooths the resulting variations

Very high frequency resolution is achieved
The Issue of Quantization Noise

- Limits PLL bandwidth
- Increases linearity requirements of phase detector
Striving for a Better PLL Implementation
Analog Phase Detection

- Pulse width is formed according to phase difference between two signals
- Average of pulsed waveform is applied to VCO input
Tradeoffs of Analog Approach

- **Benefit:** average of pulsed output is a continuous, linear function of phase error
- **Issue:** analog loop filter implementation is undesirable
Issues with Analog Loop Filter

- Charge pump: output resistance, mismatch
- Filter caps: leakage current, large area
Going Digital …

- Digital loop filter: compact area, insensitive to leakage
- Challenges:
 - Time-to-Digital Converter (TDC)
 - Digitally-Controlled Oscillator (DCO)

Staszewski et. al., TCAS II, Nov 2003
Time-to-Digital Conversion
Classical Time-to-Digital Converter

- Resolution set by a “Single Delay Chain” structure
 - Phase error is measured with delays and registers
- Corresponds to a flash architecture
Impact of Limited Resolution and Delay Mismatch

- Integer-N PLL
 - Limit cycles due to limited resolution (unless high ref noise)
- Fractional-N PLL
 - Fractional spur due to non-linearity from delay mismatch
Modeling of TDC

- Phase error converted to time error by scale factor: $\frac{T}{2\pi}$
- TDC introduces quantization error: $t_q[k]$
- TDC gain set by average delay per step: Δt_{del}
How Do We Improve Performance?

Two Key Issues:
• TDC resolution
• Mismatch
Improve Resolution with Vernier Delay Technique

- **Diagram 1:**
 - Input: \(\text{div}(t) \) and \(\text{ref}(t) \)
 - Output: \(e[k] \)
 - Description: After several delays, the output is compared, resulting in a reduced error.

- **Diagram 2:**
 - Input: \(\text{div}(t) \) and \(\text{ref}(t) \)
 - Output: \(e[k] \)
 - Description: Using the Vernier delay technique, the effective resolution is improved.

Effective resolution: Delay-Delay2

Note: The diagrams illustrate the concept of improving resolution through the use of Vernier delays, where the output signal \(e[k] \) is compared after delays to achieve a higher resolution.
Issues with Vernier Approach

- Mismatch issues are more severe than the single delay chain TDC
 - Reduced delay is formed as difference of two delays
- Large measurement range requires large area
 - Initial PLL frequency acquisition may require a large range
Two-Step TDC Architecture Allows Area Reduction

- Single delay chain provides coarse resolution
- (Folded) Vernier provides fine resolution
Two-Step TDC Using Time Amplification

Single Delay Chain

- Single delay chain provides coarse and fine resolution
- Time amplification is used to improve resolution

Simplified view of: Lee, Abidi
VLSI 2007
Leveraging Metastability to Create a Time Amplifier

- Metastability leads to progressively slower output transitions as setup time on latch is encroached upon
 - Time difference at input is amplified at output

(note that actual implementation uses SR latch)
Interpolating time-to-digital converter

- Interpolate between edges to achieve fine resolution
- Cyclic approach can also be used for large range

Henzler et al., ISSCC 2008
An Oscillator-Based TDC

- Output $e[k]$ corresponds to the number of oscillator edges that occur during the measurement time window

- Advantages
 - Extremely large range can be achieved with compact area
 - Quantization noise is scrambled across measurements
A Closer Look at Quantization Noise Scrambling

- Quantization error occurs at beginning and end of each measurement interval
- As a rough approximation, assume error is uncorrelated between measurements
 - Averaging of measurements improves effective resolution
Deterministic quantizer error vs. scrambled error

- Deterministic TDC do not provide inherent scrambling
- For oversampling benefit, TDC error must be scrambled!
- Some systems provide input scrambling ($\Delta \Sigma$ fractional-N PLL), while some others do not (integer-N PLL)
Proposed GRO TDC Structure
A Gated Ring Oscillator (GRO) TDC

- Enable ring oscillator only during measurement intervals
 - Hold the state of the oscillator between measurements
- Quantization error becomes first order noise shaped!
 - \(e[k] = \text{Phase Error}[k] + q[k] - q[k-1] \)
 - Averaging dramatically improves resolution!
Raw resolution is set by inverter delay

Effective resolution is dramatically improved by averaging
GRO TDC Also Shapes Delay Mismatch

- Barrel shifting occurs through delay elements across different measurements
 - Mismatch between delay elements is first order shaped!
Simple gated ring oscillator inverter-based core

Gate the oscillator by switching the inverter cores to the power supply
GRO Prototype

- GRO implemented as a custom 0.13 μm CMOS IC
Measured GRO Results Confirm Noise Shaping

15 Stage Gated Ring Oscillator

Variable Delay

enable(t)

Logic

error[k]

Input variable delay signal

Harmonics due to nonlinearity of variable delay

Noise shaped quant. noise
Deadzones were caused by errors in gating the oscillator
GRO “injection locked” to an integer ratio of F_S
Behavior occurred for almost all integer boundaries, and some fractional values as well
Noise shaping benefit was limited by this gating error
The issue of gating non-idealities...

- Oscillator does not stop and start instantly
- Actual phase trajectory deviates from ideal trajectory by a time defined as “T_{skew}"
Interrupted transition causes charge redistribution

- Charge redistribution depends on when the transition is stopped
- Positive and negative transitions are not perfectly symmetric
- Gating skew (T_{skew}) then depends on GRO phase (θ_{GRO}) when Enable transitions low
Cartoon depicting the error from individual stages

- Only one stage in transition at a time
- T_{skew} is the sum of error from each of the individual stages
- Periodic with $2T_q$ due to positive and negative transition asymmetry
Next Generation GRO: Multi-path oscillator concept

- Use multiple inputs for each delay element instead of one
- Allow each stage to optimally begin its transition based on information from the entire GRO phase state
- Key design issue is to ensure primary mode of oscillation
Multi-path inverter core

Lee, Kim, Lee
JSSC 1997

Mohan, et. al.,
CICC 2005
Proposed multi-path gated ring oscillator

- Oscillation frequency near 2GHz with 47 stages...
- Reduces effective delay per stage by a factor of 5-6!
- Represents a factor of 2-3 improvement compared to previous multi-path oscillators

Hsu, Straayer, Perrott
ISSCC 2008
A simple measurement approach...

- 2 counters per stage * 47 stages = 94 counters each at 2GHz
- Power consumption for these counters is unreasonable

Need a more efficient way to measure the multi-path GRO
Phase-based measurement for a simple GRO

- Simple logic provides map from GRO output state to phase
- Transition sequence is predictable, unambiguous
Accounting for phase wrapping…

- Calculate phase from:
 - A single counter for coarse phase information
 - GRO output state for fine phase residual
- 1 counter and N registers → much more efficient
Accuracy considerations...

- Counter and registers need to have the same state
- Cannot allow counters to double-count a single transition

Problems arise when counting / registering an output in transition!
De-glitch circuits to ensure accurate measurements

N-Stage Gated Ring Oscillator

Enable

Latches

VO_{de-glitch}

VO_{count}

CLK

Start

Stop

Logic

Latches

L_{de-glitch}

L_{count}

Counter

Overflow[k]

x2N Multiplier

Count

Residue

Phase[k]

Differentiator

Out[k]
Key issue with scheme for an multi-path GRO…

- More than one delay element output is logically uncertain
- Transition sequence is unpredictable and ambiguous
- Cannot map from entire GRO output state to phase
Restoring the predictable relationship...

- Calculate phase contribution from each cell independently
- Transition sequence within each cell is now predictable
Prototype 0.13μm CMOS multi-path GRO-TDC

- Two implemented versions:
 - 8-bit, 500Msps
 - 11-bit, 100Msps version
- 2-21mW power consumption depending on input duty cycle
Measured noise-shaping of multi-path GRO

- Data collected at 50Msps
- More than 20dB of noise-shaping benefit
- 80fs_{rms} integrated error from 2kHz-1MHz
- Floor primarily limited by 1/f noise (up to 0.5-1MHz)
Measured 11-bit range of multi-path GRO
- Only deadzones for outputs that are multiples of 2N
 - 94, 188, 282, etc.
 - No deadzones for other even or odd integers, fractional output
- Size of deadzone is reduced by 10x
Revised gating skew cartoon for the multi-path GRO

- At least **13** stages in transition at a time
 - Most of the mismatch from positive and negative transitions is cancelled
- T_{skew} is the *average* of error from each of the individual stages
 - GRO phase trajectory is determined by many stages, not just one
11-bit GRO-TDC performance summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Frequency</td>
<td><100 MHz</td>
</tr>
<tr>
<td>Raw delay resolution</td>
<td>6 ps</td>
</tr>
<tr>
<td>Effective resolution</td>
<td>1 ps @ 50Msps</td>
</tr>
<tr>
<td>Integrated noise</td>
<td>80fs-rms, 2kHz-1MHz</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>95dB, 1MHz BW</td>
</tr>
<tr>
<td>Power</td>
<td>2.2-21mW</td>
</tr>
<tr>
<td></td>
<td>(<4mW typical)</td>
</tr>
<tr>
<td>Area</td>
<td>157 x 258μm</td>
</tr>
<tr>
<td>Technology</td>
<td>0.13μm CMOS</td>
</tr>
</tbody>
</table>
Summary of Time to Digital Conversion

- Key performance metrics are
 - Resolution: want low quantization noise
 - Mismatch: want high linearity
 - Power and area: want long battery life, low cost

- Many structures have been introduced
 - Classical, Vernier, Two-Step, Time Amplifiers, Re-cycling, Gated Ring Oscillator

- Comparable to ADCs but suffers from lack of “time memory element”
 - Cyclic conversion and pipeline structures have not been achieved

- A very promising research area!
Digitally-Controlled Oscillators
A Straightforward Approach for Achieving a DCO

Use a DAC to control a conventional LC oscillator
- Allows the use of an existing VCO within a digital PLL
- Can be applied across a broad range of IC processes
A Much More Digital Implementation

- Adjust frequency in an LC oscillator by switching in a variable number of small capacitors
 - Most effective for CMOS processes of 0.13u and below

Staszewski et. al., TCAS II, Nov 2003
Leveraging Segmentation in Switched Capacitor DCO

- Similar in design as segmented capacitor DAC structures
 - Binary array: efficient control, but may lack monotonicity
 - Unit element array: monotonic, but complex control
- Coarse and fine control segmentation of DCO
 - Coarse control: active only during initial frequency tuning (leverage binary array)
 - Fine control: controlled by PLL feedback (leverage unit element array to guarantee monotonicity)
Leveraging Dithering for Fine Control of DCO

- Increase resolution by $\Sigma-\Delta$ dithering of fine cap array
- Reduce noise from dithering by
 - Using small unit caps in the fine cap array
 - Increasing the dithering frequency (defined as $1/T_c$)
 - We will assume $1/T_c = M/T$ (i.e. M times reference frequency)
Time-Domain Modeling of the DCO

- Input to the DCO is supplied by the loop filter
 - Clocked at \(1/T\) (i.e., reference frequency)
- Switched capacitors are dithered by \(\Sigma-\Delta\) at a higher rate
 - Clocked at \(1/T_c = M/T\)
 - Held at a given setting for duration \(T_c\)
- Fine cap element value determines \(K_v\) of VCO
 - Units of \(K_v\) are Hz/unit cap
Frequency Domain Modeling of DCO

- Upsampler and zero-order hold correspond to discrete and continuous-time sinc functions, respectively.
- $\Sigma-\Delta$ has signal and noise transfer functions ($H_{stf}(z)$, $H_{ntf}(z)$)
 - Note: $\text{var}(q_{\text{raw}}[k]) = 1/12$ (uniformly distributed from 0 to 1)
- **Focus on low frequencies for calculations to follow**
 - Assume *sinc* functions are relatively flat at the low frequencies of interest
 - Upsampler is approximated as a gain of *M*
 - Zero-order hold is approximated as a gain of *T_c*
- **Assume** \(H_{\text{stf}}(z) = 1 \)
 - True for \(\Sigma-\Delta \) structures such as MASH (ignoring delays)
Spectral Density Calculations

- **CT → CT**
 \[S_y(f) = |H(f)|^2 S_x(f) \]

- **DT → DT**
 \[S_y(e^{j2\pi fT}) = |H(e^{j2\pi fT})|^2 S_x(e^{j2\pi fT}) \]

- **DT → CT**
 \[S_y(f) = \frac{1}{T}|H(f)|^2 S_x(e^{j2\pi fT}) \]
Calculation of Quantization Noise from Cap Dithering

- **DT to CT spectral calculation:**

\[
S_{\Phi_{out}(f)}_{dco,\text{quant}} = \frac{1}{T_c} \left| T_c \frac{2\pi K_v}{j2\pi f} \right|^2 \left| H_{ntf}(e^{j2\pi f T_c}) \right|^2 S_{q_{raw}}(f)
\]

\[
= T_c \left| \frac{K_v}{f} \right|^2 \left| H_{ntf}(e^{j2\pi f T_c}) \right|^2 \frac{1}{12}
\]

- \(S_{q_{raw}}(f) = 1/12 \) since \(q_{raw}[k] \) uniformly distributed from 0 to 1
- \(H_{ntf}(z) \) is often 1-\(z^{-1} \) (first order) or (1-\(z^{-1} \))^2 (second order)
Example Calculation for DCO Quantization Noise

- Assumptions (Out freq = 3.6 GHz)
 - Dithering frequency is 200 MHz (i.e., \(1/T_c = 200e6\))
 - \(\Sigma–\Delta\) has first order shaping (i.e., \(H_{ntf}(z) = 1 - z^{-1}\))
 - Fine cap array yields 12 kHz/unit cap (i.e., \(K_v = 12e3\))

\[
S_{\Phi_{out}}(f)|_{dco,quant} = T_c \left| \frac{K_v}{f} \right|^2 \left| H_{ntf}(e^{j2\pi f T_c}) \right|^2 \frac{1}{12}
\]

\[
= \frac{1}{200e6} \left| \frac{12e3}{f} \right|^2 \left| 1 - e^{j2\pi f / 200e6} \right|^2 \frac{1}{12}
\]

- At a frequency offset of \(f = 20\) MHz:

\[
= \frac{1}{200e6} \left| \frac{12e3}{20e6} \right|^2 \left| 1 - e^{j2\pi 1/10} \right|^2 \frac{1}{12} = 5.73 \cdot 10^{-17}
\]

\[
10 \log(5.73 \cdot 10^{-17}) = -162.4 \text{ dBc/Hz} \text{ (at 20 MHz offset)}
\]

Below the phase noise (-153 dBc/Hz at 20 MHz) in the example
Further Simplification of DCO Model

- Proper design of DCO will yield quantization noise that is below that of the intrinsic phase noise (set by tank Q, etc.)
 - Assume $q[k] = 0$ for simplified model
- Note that $T = M\phi T_c$
Overall Digital PLL Model

- TDC and DCO-referred noise influence overall phase noise according to associated transfer functions to output
- Calculations involve both discrete and continuous time
Key Transfer Functions

- **TDC-referred noise**

\[
\frac{\Phi_{out}}{t_q} = \frac{(1/\Delta t_{del})H(e^{j2\pi fT})T2\pi K_v}{1 + (1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi fj)(1/N)}
\]

- **DCO-referred noise**

\[
\frac{\Phi_{out}}{\Phi_n} = \frac{1}{1 + (1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi fj)(1/N)}
\]
Define open loop transfer function $A(f)$ as:

$$A(f) = \left(\frac{1}{\Delta t_{del}}\right) H(e^{j2\pi fT})TK_v/(2\pi j f)(1/N)$$

Define closed loop parameterizing function $G(f)$ as:

$$G(f) = \frac{A(f)}{1 + A(f)}$$

Note: $G(f)$ is a lowpass filter with DC gain = 1
Transfer Function Parameterization Calculations

- **TDC-referred noise**

\[
\frac{\Phi_{out}}{t_q} = \frac{(1/\Delta t_{del}) H(e^{j2\pi f T})T 2\pi K_v/(2\pi j f)}{1 + (1/\Delta t_{del}) H(e^{j2\pi f T})TK_v/(2\pi j f)(1/N)}
\]

\[
= \frac{2\pi N A(f)}{1 + A(f)} = 2\pi N G(f)
\]

- **DCO-referred noise**

\[
\frac{\Phi_{out}}{\Phi_n} = \frac{1}{1 + (1/\Delta t_{del}) H(e^{j2\pi f T})TK_v/(2\pi j f)(1/N)}
\]

\[
= \frac{1}{1 + A(f)} = \frac{1 + A(f) - A(f)}{1 + A(f)} = 1 - G(f)
\]
Key Observations

- **TDC-referred noise**
 \[\frac{\Phi_{out}}{t_q} = 2\pi NG(f) \]
 Lowpass with a DC gain of \(2\pi N\)

- **DCO-referred noise**
 \[\frac{\Phi_{out}}{\Phi_n} = 1 - G(f) \]
 Highpass with a high frequency gain of 1

How do we calculate the output phase noise?
Phase Noise Calculation

- **TDC noise**
 - DT to CT calculation
 - Dominates PLL phase noise at low frequency offsets

- **DCO noise**
 - CT to CT calculation
 - Dominates PLL phase noise at high frequency offsets

\[S_{\Phi n}(f) = 2\pi NG(f) \]
\[S_{\Phi n}(f) = 1-G(f) \]
\[S_{tq}(e^{j2\pi fT}) \]

\[\frac{1}{T} \left| 2\pi NG(f) \right|^2 S_{tq}(e^{j2\pi fT}) \]
\[\left| 1-G(f) \right|^2 S_{\Phi n}(f) \]
Impact of PLL Bandwidth

- PLL bandwidth dramatically influences relative impact of TDC and VCO noise

Want high PLL bandwidth? Need low TDC Noise

Low PLL Bandwidth

High PLL Bandwidth

M.H. Perrott
System Level Design
Closed Loop PLL Design Approach

- Classical open loop approach
 - Indirectly design $G(f)$ using bode plots of $A(f)$
- Proposed closed loop approach
 - Directly design $G(f)$ by examining impact of its specifications on phase noise (and settling time)
 - Solve for $A(f)$ that will achieve desired $G(f)$

Implemented in PLL Design Assistant Software
http://www.cppsim.com

Lau and Perrott, DAC, June 2003
Transfer Function Design using PLL Design Assistant

- PLL Design Assistant assumes continuous-time open loop transfer function $A_{calc}(s)$:

$$A_{calc}(s) = \frac{K}{s^{type}} \frac{1 + s/w_z}{1 + s/w_p}$$

- Above parameters are calculated based on the desired closed loop PLL bandwidth, type, and order of rolloff (which specify $G(s)$).

- For 100 kHz bandwidth, type = 2, 2nd order rolloff, we have:
 - $K = 3.0 \times 10^{10}$
 - $w_p = 2\pi(153 \text{ kHz})$
 - $w_z = 2\pi(10 \text{ kHz})$
Continuous-Time Approximation of Digital PLL

- At low frequencies (i.e., $|sT| \ll 1$), we can use the first order term of a Taylor series expansion to approximate

$$z^{-1} = e^{-sT} \approx 1 - sT$$

- Resulting continuous-time approximation of open loop transfer function of digital PLL:

$$A(s) \approx \frac{T}{\Delta t_{del}} \frac{K_v}{N} \frac{1}{s} H(z) \bigg|_{z^{-1} \approx 1 - sT}$$
Applying PLL Design Assistant to Digital PLL Design

- Given the continuous-time approximation of $A(s)$, we then leverage the PLL Design Assistant calculation:

$$A(s) = A_{calc}(s)$$

- Also note that:

$$z^{-1} = 1 - sT \Rightarrow s = \frac{1 - z^{-1}}{T}$$

- Given the above, we obtain:

$$\frac{T}{\Delta t_{del}} \frac{K_v}{N} \frac{1}{s} H(z) \bigg|_{s=\frac{1-z^{-1}}{T}} = \frac{K}{s_{type}} \frac{1 + s/w_z}{1 + s/w_p} \bigg|_{s=\frac{1-z^{-1}}{T}}$$

$$\Rightarrow H(z) = \frac{\Delta t_{del}}{T} \frac{N}{K_v} \left(\frac{K}{s_{type}-1} \right) \frac{1 + s/w_z}{1 + s/w_p} \bigg|_{s=\frac{1-z^{-1}}{T}}$$
Simplified Form for Digital Loop Filter (Type II PLL)

- From previous slide:

\[
H(z) = \frac{\Delta t_{del}}{T} \frac{N}{K_v} \left(\frac{K}{s^{type-1}} \right) \frac{1 + s/w_z}{1 + s/w_p} \bigg|_{s=\frac{1-z^{-1}}{T}}
\]

- Simplified form with \textit{type} = 2 (assume \textit{order} = 2)

\[
H(z) = K_{LF} \left(\frac{1}{1 - z^{-1}} \right) \frac{1 - b_1 z^{-1}}{1 - a_1 z^{-1}}
\]

- Where:

\[
\begin{align*}
 a_1 &= \frac{1}{1 + w_p T} \\
 b_1 &= \frac{1}{1 + w_z T}
\end{align*}
\]

\[
K_{LF} = \left(\frac{\Delta t_{del}}{T/N} \right) \frac{K}{K_v} \left(\frac{w_p}{w_z} \right) \frac{a_1}{b_1} T
\]

* Typically implemented by gain normalization circuit

Note:

\[T_{dco} = T/N \]
Summary of Loop Filter Design

- PLL Design Assistant allows fast loop filter design
 - Assumption: Type = 2, 2nd order rolloff

\[
H(z) = K_{LF} \left(\frac{1}{1 - z^{-1}} \right) \frac{1 - b_1 z^{-1}}{1 - a_1 z^{-1}}
\]

- Where:
 \[
a_1 = \frac{1}{1 + w_p T} \quad b_1 = \frac{1}{1 + w_z T}
\]

\[
K_{LF} = \left(\frac{\Delta t_{del}}{T/N} \right) \frac{K}{K_v} \left(\frac{w_p}{w_z} \right) \frac{a_1}{b_1} \frac{T}{1}
\]

* implemented by gain normalization circuit

- PLL Design Assistant provides the values of \(K, w_p = 2\pi f_p, w_z = 2\pi f_z \)
Example Digital Loop Filter Calculation

- **Assumptions**
 - Ref freq \((1/T) = 50\) MHz, Out freq = 3.6 GHz (so \(N = 72\))
 - \(\Delta t_{del} = 20\) ps, \(K_v = 12\) kHz/unit cap
 - 100 kHz bandwidth, Type = 2, 2\(^{nd}\) order rolloff

\[
H(z) = K_{LF} \left(\frac{1}{1 - z^{-1}} \right) \frac{1 - b_1 z^{-1}}{1 - a_1 z^{-1}}
\]

\[
b_1 = \frac{1}{1 + 2\pi \cdot 10\text{kHz}/50\text{MHz}} = 0.9987
\]

\[
a_1 = \frac{1}{1 + 2\pi \cdot 153\text{kHz}/50\text{MHz}} = 0.9811
\]

\[
K_{LF} = \left(\frac{\Delta t_{del}}{T/N} \right) \frac{3 \cdot 10^{10}}{12\text{kHz}} \frac{153}{10} \frac{0.9811}{0.9987} \frac{1}{50\text{MHz}}
\]

\[
= \left(\frac{\Delta t_{del}}{T/N} \right) 0.75 = \left(\frac{\Delta t_{del}}{T_{dco}} \right) 0.75
\]
Overall PLL Noise Analysis
Calculation of TDC Noise Spectrum: Delay Chain TDC

- Under the assumption that quantization error is uniformly distributed across time interval Δt_{del}:
 \[
 S_{t_q}(e^{j2\pi fT}) = \frac{(\Delta t_{del})^2}{12}
 \]

- Key issue: quantization error may not be white for this TDC!
 - Use behavioral simulations to get a more accurate view
 - $1/f$ noise may have impact
Calculation of TDC Noise Spectrum: GRO TDC

- GRO achieves noise shaping:

\[
S_{t_q}(e^{j2\pi fT}) = \left|1 - e^{-j2\pi fT}\right|^2 \frac{(\Delta t_{del})^2}{12}
\]

- 1/f and thermal noise limit noise performance at low frequency offsets

1/f noise
thermal noise
Example Calculation for Delay Chain TDC

- Ref freq = $1/T = 50$ MHz, Out freq = 3.6 GHz

 \[N = \frac{3600}{50} = 72 \]

- Inverter delay = $\Delta t_{del} = 20$ ps

\[S_{\Phi_{out}}(f) \bigg|_{tdc} = \frac{1}{\Delta t_{del}} \left| 2\pi N G(f) \right|^2 \frac{\Delta t_{del}^2}{12} \]

 \[= 3.4 \cdot 10^{-10} \left| G(f) \right|^2 \]

- Note: $G(f) = 1$ at low offset frequencies

\[10 \log(3.4 \cdot 10^{-10}) = -94.7 \text{ dBc/Hz (at low offset freq.)} \]
Phase noise
- Same as for conventional VCO (tank Q, etc.)

Quantization noise from dithering
- Design to be less than VCO phase noise

Calculation of Noise Spectrum: Switched Cap DCO
Evaluate Phase Noise with 500 kHz PLL Bandwidth

- **Key PLL parameters:**
 - $G(f)$: 500 kHz BW, Type II, 2nd order rolloff
 - TDC noise: -94.7 dBc/Hz
 - DCO noise: -153 dBc/Hz at 20 MHz offset (3.6 GHz carrier)
Calculated Phase Noise Spectrum with 500 kHz BW

Output Phase Noise of Synthesizer

-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160

Frequency Offset (Hz)

L(f) (dBc/Hz)

GSM Mask
(Referenced to
3.6 GHz carrier)

TDC Noise

Overall PLL Phase Noise

DCO Noise

TDC noise too high for GSM mask with 500 kHz PLL bandwidth
Change PLL Bandwidth to 100 kHz

- **Key PLL parameters:**
 - $G(f)$: 100 kHz BW, Type = 2, 2nd order rolloff
 - TDC noise: -94.7 dBC/Hz
 - DCO noise: -153 dBC/Hz at 20 MHz offset (3.6 GHz carrier)
Output Phase Noise of Synthesizer

-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160

Frequency Offset (Hz)

L(f) (dBc/Hz)

Overall PLL Phase Noise
DCO Noise
TDC Noise
GSM Mask (Referenced to 3.6 GHz carrier)

GSM mask is met with 100 kHz PLL bandwidth
Digital Fractional-N Synthesis
A First Glance at Fractional-N Signals ($F_{out} = 4.25F_{ref}$)

- Constant divide value of $N = 4$ leads to frequency error
 - Phase error accumulates in unbounded manner
TI Approach to Fractional Division

- Wrap e[k] by feeding delay chain in TDC with out(t)
- Counter provides information of when wrapping occurs
Key Issues

- Counter, re-timing register, and delay stages of TDC must operate at very high speeds
 - Power consumption can be an issue
- Calibration of TDC scale factor required to achieve proper unwrapping of \(e[k] \)
 - Can be achieved continuously with relative ease
 - See Staszewski et. al, JSSC, Dec 2005
Fractional-N Synthesizer Approach \((F_{out} = 4.25F_{ref})\)

Accumulator guides the “swallowing” of VCO cycles

- Average divide value of \(N = 4.25\) is achieved in this case
The Accumulator as a Phase “Observer”

- Accumulator residue corresponds to an estimate of the instantaneous phase error of the PLL
 - Fractional value (i.e., 0.25) yields the slope of the residue
- Carry out signal is asserted when the phase error deviation (i.e. residue) exceeds one VCO cycle
 - Carry out signal accurately predicts when a VCO cycle should be “swallowed”
Improve Dithering Using Sigma-Delta Modulation

- Provides improved noise performance over accumulator-based divide value dithering
 - Dramatic reduction of spurious noise
 - Noise shaping for improved in-band noise
 - Maintains bounded phase error signal
- Digital \(\Sigma-\Delta\) fractional-N synthesizer architecture is directly analogous to analog \(\Sigma-\Delta\) fractional-N synth.
Model of Digital Σ–Δ Fractional-N PLL

- Divider model is expanded to include the impact of divide value variations
Transfer Function View of Digital Σ–Δ Fractional-N PLL

- Σ–Δ quantization noise now impacts the overall PLL phase noise
 - High PLL bandwidth will increase its impact
- Digital PLL implementation simplifies quantization noise cancellation
- Implements basic version of TI “all-digital” synthesizer with parameters we calculated in this tutorial
Comparing Behavioral Simulation to Calculations

- Calculations validated by simulation results!
Behavioral Simulation of a Digital Fractional-N PLL

Check out the CppSim tutorial:

- Design of a Low-Noise Wide-BW 3.6GHz Digital Σ–Δ Fractional-N Frequency Synthesizer Using the PLL Design Assistant and CppSim

http://www.cppsim.com
Summary of Digital Frequency Synthesizers

- Digital Phase-Locked Loops look extremely promising for future applications
 - Very amenable to future CMOS processes
 - Excellent performance can be achieved
- TDC structures are an exciting research area
 - Ideas from A-to-D conversion can be applied
- Analysis of digital PLLs is similar to analog PLLs
 - PLL bandwidth is often chosen for best noise performance
 - TDC (or Ref) noise dominates at low frequency offsets
 - DCO noise dominates at high frequency offsets
- Behavioral simulation tools such as CppSim allow architectural investigation and validation of calculations

Innovation of future digital PLLs will involve joint circuit/algorithm development