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Bandwidth Constraints for Integer-N Synthesizers

PFD output has a periodicity of 1/T
- 1/T = reference frequency

Loop filter must have a bandwidth << 1/T
- PFD output pulses must be filtered out and average value 

extracted
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ref(t) out(t)

N[k]

Divider

1/T Loop Filter
Bandwidth << 1/T

Closed loop PLL bandwidth often chosen to be a
factor of ten lower than 1/T
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Bandwidth Versus Frequency Resolution

Frequency resolution set by reference frequency (1/T)
- Higher resolution achieved by lowering 1/T
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Increasing Resolution in Integer-N Synthesizers

Use a reference divider to achieve lower 1/T
- Leads to a low PLL bandwidth ( < 20 kHz here )

PFD Loop
Filter

1.80 1.8002 GHz

(1/T = 200 kHz)
ref(t) out(t)

out(t)

Sout(f)

N[k]

N[k]
9000
9001

Divider

frequency resolution = 1/T

1/T

1/T Loop Filter
Bandwidth << 1/T

100
20 MHz



5M.H. Perrott

The Issue of Noise

Lower 1/T leads to higher divide value
- Increases PFD noise at synthesizer output
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Modeling PFD Noise Multiplication

Influence of PFD noise seen in model from Lecture 16
- PFD spectral density multiplied by N2 before influencing PLL 

output phase noise
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Outline Of Talk

Dual-loop Synthesizers
Direct Digital Synthesizers
Fractional-N Synthesizers
- Traditional Approach
- Sigma-Delta Concepts
- Synthesizer Noise Analysis
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Dual-Loop Frequency Synthesizer

Overall synthesizer output

From trigonometry:  cos(A-B) = cosAcosB+sinAsinB
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Choose top synthesizer to provide coarse tuning and 
bottom synthesizer to provide fine tuning
- Choose w1 to be high in frequency

Set ref1 to be high to avoid large N            low resolution
- Choose w2 to be low in frequency

Allows ref2 to be low without large M         high resolution

Advantage #1:  Avoids Large Divide Values
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Advantage #2:  Provides Suppression of VCO Noise

Top VCO has much more phase noise than bottom VCO 
due to its much higher operating frequency
- Suppress top VCO noise by choosing a high PLL 

bandwidth for top synthesizer
High PLL bandwidth possible since ref1 is high
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Alternate Dual-Loop Architecture

Calculation of output frequency
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Advantage of Alternate Dual-Loop Architecture

Issue:  a practical single-sideband mixer implementation 
will produce a spur at frequency w1 + w2
PLL bandwidth of top synthesizer can be chosen low 
enough to suppress the single-sideband spur
- Negative:  lower suppression of top VCO noise
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Direct Digital Synthesis (DDS)

Encode sine-wave values in a ROM
Create sine-wave output by indexing through ROM 
and feeding its output to a DAC and lowpass filter
- Speed at which you index through ROM sets frequency 

of output sine-wave
Speed of indexing is set by increment value on counter 
(which is easily adjustable in a digital manner)

Counter ROM DAC LPF

clk

out
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Pros and Cons of Direct Digital Synthesis

Advantages
- Very fast adjustment of frequency- Very high resolution can be achieved- Highly digital approach

Disadvantages
- Difficult to achieve high frequencies- Difficult to achieve low noise- Power hungry and complex

Counter ROM DAC LPF

clk

out
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Hybrid Approach

Use DDS to create a finely adjustable reference 
frequency
Use integer-N synthesizer to multiply the DDS output 
frequency to much higher values
Issues
- Noise of DDS is multiplied by N2

- Complex and power hungry

out
Counter ROM DAC LPF

clk

PFD Loop
Filter

Divider
VCO

ref

N
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Fractional-N Frequency Synthesizers

Break constraint that divide value be integer
- Dither divide value dynamically to achieve fractional values
- Frequency resolution is now arbitrary regardless of 1/T

Want high 1/T to allow a high PLL bandwidth

Dithering
Modulator
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Classical Fractional-N Synthesizer Architecture

Use an accumulator to perform dithering operation
- Fractional input value fed into accumulator
- Carry out bit of accumulator fed into divider

1-bit

PFD Loop
Filter

ref(t)

div(t)

out(t)

frac[k]
Accumulator

N/N+1

carry_out[k]
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Nsd[k] = N + frac[k]
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Accumulator Operation

Carry out bit is asserted when accumulator residue 
reaches or surpasses its full scale value
- Accumulator residue increments by input fractional 

value each clock cycle

residue[k]

carry_out[k]

frac[k] =.25

1-bit
M-bit

M-bit
frac[k]

Accumulator
carry_out[k]

residue[k]

clk(t)
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Fractional-N Synthesizer Signals with N = 4.25

Divide value set at N = 4 most of the time 
- Resulting frequency offset causes phase error to 

accumulate
- Reset phase error by “swallowing” a VCO cycle

Achieved by dividing by 5 every 4 reference cycles

phase error(t)

carry_out(t)

out(t)

div(t)

ref(t)

e(t)
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The Issue of Spurious Tones

PFD error is periodic
- Note that actual PFD waveform is series of pulses – the 

sawtooth waveform represents pulse width values over time
Periodic error signal creates spurious tones in synthesizer 
output
- Ruins noise performance of synthesizer

1-bit

PFD Loop
Filter

ref(t)

div(t)

out(t)

frac[k]
Accumulator

N/N+1

carry_out[k]
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The Phase Interpolation Technique

Phase error due to fractional technique is predicted 
by the instantaneous residue of the accumulator
- Cancel out phase error based on accumulator residue

1-bit
M-bit

M-bit

PFD Loop
Filter

ref(t)

div(t)

out(t)

frac[k]
Accumulator

N/N+1

carry_out[k]
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α



22M.H. Perrott

The Problem With Phase Interpolation

Gain matching between PFD error and scaled D/A 
output must be extremely precise
- Any mismatch will lead to spurious tones at PLL output

1-bit
M-bit

M-bit

PFD Loop
Filter

ref(t)

div(t)

out(t)

frac[k]
Accumulator

N/N+1

carry_out[k]

e(t)

D/A

residue[k]

α



Is There a Better Way?
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A Better Dithering Method:  Sigma-Delta Modulation

Sigma-Delta dithers in a manner such that resulting 
quantization noise is “shaped” to high frequencies

M-bit Input 1-bit
D/A

Analog Output

Input

Quantization
Noise

Digital Input
Spectrum

Analog Output
Spectrum

Time Domain

Frequency Domain

Σ−Δ

Digital Σ−Δ
Modulator
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Linearized Model of Sigma-Delta Modulator

Composed of two transfer functions relating input and 
noise to output
- Signal transfer function (STF)

Filters input (generally undesirable)
- Noise transfer function (NTF)

Filters (i.e., shapes) noise that is assumed to be white

x[k] y[k] y[k]x[k]
q[k]

r[k]

z=ej2πfT

z=ej2πfT

NTF

STF

Σ−Δ

Hn(z)

Hs(z)

1

Sr(ej2πfT)= 1
12

Sq(ej2πfT)=    |Hn(ej2πfT)|21
12
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Example:   Cutler Sigma-Delta Topology

Output is quantized in a multi-level fashion
Error signal, e[k], represents the quantization error
Filtered version of quantization error is fed back to 
input
- H(z) is typically a highpass filter whose first tap value is 1

i.e., H(z) = 1 + a1z-1 + a2 z-2 L

- H(z) – 1 therefore has a first tap value of 0
Feedback needs to have delay to be realizable

x[k] u[k]

e[k]

y[k]

H(z) - 1
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Linearized Model of Cutler Topology

Represent quantizer block as a summing junction in 
which r[k] represents quantization error
- Note:

It is assumed that r[k] has statistics similar to white 
noise
- This is a key assumption for modeling – often not true!

x[k] u[k]

e[k]

y[k]

H(z) - 1

x[k] u[k]
r[k]

e[k]

y[k]

H(z) - 1
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Calculation of Signal and Noise Transfer Functions

Calculate using Z-transform of signals in linearized
model

- NTF:   Hn(z) = H(z)
- STF:   Hs(z) = 1

x[k] u[k]

e[k]

y[k]

H(z) - 1

x[k] u[k]
r[k]

e[k]

y[k]

H(z) - 1
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A Common Choice for H(z)
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Example:  First Order Sigma-Delta Modulator

Choose NTF to be

Plot of output in time and frequency domains with 
input of

0
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Example:  Second Order Sigma-Delta Modulator

Choose NTF to be

Plot of output in time and frequency domains with 
input of
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Example:  Third Order Sigma-Delta Modulator

Choose NTF to be

Plot of output in time and frequency domains with 
input of
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Observations

Low order Sigma-Delta modulators do not appear to 
produce “shaped” noise very well
- Reason:  low order feedback does not properly 

“scramble” relationship between input and quantization 
noise

Quantization noise, r[k], fails to be white
Higher order Sigma-Delta modulators provide much 
better noise shaping with fewer spurs
- Reason:  higher order feedback filter provides a much 

more complex interaction between input and 
quantization noise
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Warning:  Higher Order Modulators May Still Have Tones

Quantization noise, r[k], is best whitened when a 
“sufficiently exciting” input is applied to the modulator
- Varying input and high order helps to “scramble”

interaction between input and quantization noise
Worst input for tone generation are DC signals that are 
rational with a low valued denominator
- Examples (third order modulator):
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Fractional Spurs Can Be Theoretically Eliminated

See:
- M. Kozak, I. Kale, “Rigorous Analysis of Delta-Sigma 

Modulators for Fractional-N PLL Frequency Synthesis”, 
IEEE Transactions on Circuits and Systems I: 
Fundamental Theory and Applications, vol. 51, no. 6, pp. 
1148-1162, June 2004

- S. Pamarti, I. Galton, "LSB Dithering in MASH Delta–
Sigma D/A Converters", IEEE Transactions on Circuits 
and Systems I: Regular Papers, vol. 54, no. 4, pp. 779 –
790, April 2007. 
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Cascaded Sigma-Delta Modulator Topologies

Achieve higher order shaping by cascading low order 
sections and properly combining their outputs
Advantage over single loop approach
- Allows pipelining to be applied to implementation

High speed or low power applications benefit
Disadvantages
- Relies on precise matching requirements when combining 

outputs (not a problem for digital implementations)
- Requires multi-bit quantizer (single loop does not)

x[k]

y[k]

q1[k]
ΣΔM1[k]

y1[k]

q2[k]
ΣΔM2[k]

y2[k]

ΣΔM3[k]

y3[k]

M 1 1

Digital Cancellation Logic
Multibit
output
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MASH topology

Cascade first order sections
Combine their outputs after they have passed through 
digital differentiators

x[k]

y[k]

r1[k]
ΣΔM1[k]

y1[k]

r2[k]
ΣΔM2[k]

y2[k]

u[k]

ΣΔM3[k]

y3[k]

M 1 1

1-z-1 (1-z-1)2
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Calculation of STF and NTF for MASH topology (Step 1)

Individual output signals of each first order modulator

Addition of filtered outputs

x[k]

y[k]

r1[k]
ΣΔM1[k]

y1[k]

r2[k]
ΣΔM2[k]

y2[k]

u[k]

ΣΔM3[k]

y3[k]

M 1 1

1-z-1 (1-z-1)2
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Calculation of STF and NTF for MASH topology (Step 1)

Overall modulator behavior

- STF:  Hs(z) = 1
- NTF:  Hn(z) = (1 – z-1)3

x[k]

y[k]

r1[k]
ΣΔM1[k]

y1[k]

r2[k]
ΣΔM2[k]

y2[k]

u[k]

ΣΔM3[k]

y3[k]

M 1 1

1-z-1 (1-z-1)2
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Sigma-Delta Frequency Synthesizers

Use Sigma-Delta modulator rather than accumulator 
to perform dithering operation
- Achieves much better spurious performance than 

classical fractional-N approach

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−Δ
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

M
M+1

Fout = M.F  Fref

f

Σ−Δ
Quantization

Noise

Fref

Riley et. al.,
JSSC, May 1993
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Background:  The Need for A Better PLL Model

Classical PLL model
- Predicts impact of PFD and VCO referred noise sources
- Does not allow straightforward modeling of impact due 

to divide value variations
This is a problem when using fractional-N approach

Φdiv[k]
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A PLL Model Accommodating Divide Value Variations

See derivation in Perrott et. al., “A Modeling Approach 
for Sigma-Delta Fractional-N Frequency Synthesizers 
…”, JSSC, Aug 2002
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Parameterized Version of New Model

Φvn(t)

T G(f)
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Spectral Density Calculations

Case (a):

Case (b):

Case (c):

y[k]x[k]
H(ej2πfT)

y(t)x[k]
H(f)

y(t)x(t)
H(f)case (a):  CT     CT

case (b):  DT     DT

case (c):  DT     CT
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Example:  Calculate Impact of Ref/Divider Jitter (Step 1)

Assume jitter is white
- i.e., each jitter value independent of values at other time 

instants
Calculate spectra for discrete-time input and output
- Apply case (b) calculation

Δtjit[k]

(Δtjit)rms= β sec.

�π Φjit[k]
T

T
�π
T f

0

SΦjit(e
j2πfT)

t

Div(t)

β2
2
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Compute impact on output phase noise of synthesizer
- We now apply case (c) calculation

- Note that G(f) = 1 at DC

Φjit[k]
fo
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G(f)Nnom

Φn (t)

SΦn(f)
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T

TT
1 �π

T
β2

2

Δtjit[k]
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�π Φjit[k]
T

T
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0
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t
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β2
2

Example:  Calculate Impact of Ref/Divider Jitter (Step 2)
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Now Consider Impact of Divide Value Variations
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Divider Impact For Classical Vs Fractional-N Approaches

G(f)
n[k] Fout(t)

D/A and Filter

T
1n(t)

1/T1

fo

G(f)
n[k] Fout(t)

D/A and Filter

T
1

1/T1
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Dithering
Modulator

nsd(t) nsd[k]

Classical Synthesizer

Fractional-N Synthesizer

Note:  1/T block represents sampler (to go from CT to DT)
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Focus on Sigma-Delta Frequency Synthesizer

Divide value can take on fractional values
- Virtually arbitrary resolution is possible

PLL dynamics act like lowpass filter to remove much 
of the quantization noise

G(f)
n[k]

n[k]

nsd[k]

nsd[k]

nsd(t) Fout(t)

Fout(t)

D/A and Filter

T
1

1/T1

fo
Σ−Δ

freq=1/T
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Quantifying the Quantization Noise Impact

Calculate by simply attaching Sigma-Delta model
- We see that quantization noise is integrated and then 

lowpass filtered before impacting PLL output 

Φvn(t)

T G(f)
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fo

fo

G(f)�πNnom

z=ej2πfT

α

f
0 f0

-20 dB/dec
SEn

(f)

Sq(ej2πfT)

SΦvn
(f)

1/T

f
0

z=ej2πfT

Σ−Δ

q[k]
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STF
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12
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Noise
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A Well Designed Sigma-Delta Synthesizer

Order of G(f) is set to equal to the Sigma-Delta order
- Sigma-Delta noise falls at -20 dB/dec above G(f) bandwidth

Bandwidth of G(f) is set low enough such that synthesizer 
noise is dominated by intrinsic PFD and VCO noise

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

Frequency

S
pe

ct
ra

l D
en

si
ty

 (d
B

c/
H

z)

f0 1/T

10 kHz 100 kHz 1 MHz 10 MHz

PFD-referred
noise

SΦout,En
(f)

VCO-referred
 noise

SΦout,vn
(f)

Σ−Δ
noise

SΦout,ΔΣ
(f)

fo = 84 kHz



52M.H. Perrott

Impact of Increased PLL Bandwidth

Allows more PFD noise to pass through
Allows more Sigma-Delta noise to pass through
Increases suppression of VCO noise
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Impact of Increased Sigma-Delta Order

PFD and VCO noise unaffected
Sigma-Delta noise no longer attenuated by G(f) such 
that a -20 dB/dec slope is achieved above its bandwidth
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Summary of Advanced Analog Synthesizers

Integer-N synthesizers have limited resolution for a 
given PLL bandwidth
Advanced synthesizers improve the achievable 
resolution for a given bandwidth
- Dual-loop synthesizers leverage two synthesizers and 

an I/Q mixer
- Direct digital synthesizers use a lookup table and digital 

logic
- Fractional-N synthesizers leverage Sigma-Delta 

modulation
Simpler structure than the other approaches
Primary issue is introduction of Sigma-Delta quantization 
noise



Clock And Data Recovery
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High Speed Data Links

A challenging component is the clock and data 
recovery circuit (CDR)
- Two primary functions

Extract the clock corresponding to the input data signal
Resample the input data

Zin
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trace

Package
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Data

Clk
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Outline of Talk

Clock and Data Recovery circuits
- Jitter specifications
- Phase detection
- Modeling
- Data dependent jitter
- Bang-bang systems

Delay locked loops
- Implementation
- The issue of infinite delay
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PLL Based Clock and Data Recovery

Use a phase locked loop to tune the frequency and 
phase of a VCO to match that of the input data
Performance issues
- Jitter
- Acquisition time
- Bit error rate (at given input levels)

Let’s focus on specifications for OC-192
- i.e., 10 Gbit/s SONET

PD Charge
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clk(t)e(t) v(t)Loop
Filter
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data(t)

data(t)
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Jitter Generation

Definition
- The amount of jitter at the output of the CDR when no 

jitter (i.e., negligible jitter) is present on the data input
SONET requires
- < 10 mUI rms jitter
- < 100 mUI peak-to-peak jitter

Note:  UI is unit interval, and is defined as the period 
of the clk signal (i.e., 100 ps for 10 Gbit/s data rates)

PD Charge
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clk(t)e(t) v(t)Loop
Filter
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retimed
data(t)

data(t)



60M.H. Perrott

Jitter Tolerance

Definition
- The maximum amount of jitter allowed on the input while 

still achieving low bit error rates (< 10e-12)
SONET specifies jitter tolerance according to the 
frequency of the jitter
- Low frequency jitter can be large since it is tracked by PLL
- High frequency jitter (above the PLL bandwidth) cannot be 

as high (PLL can’t track it out)
Limited by setup and hold times of PD retiming register
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data(t)
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Example Jitter Tolerance Mask

CDR tested for tolerance compliance by adding sine wave 
jitter at various frequencies (with amplitude greater than 
mask) to the data input and observing bit error rate
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Jitter Transfer

Definition
- The amount of jitter attenuation that the CDR provides 

from input to output
SONET specifies jitter transfer by placing limits on its 
transfer function behavior from input to output
- Peaking behavior:  low frequency portion of CDR transfer 

function must be less than 0.1 dB
- Attenuation behavior:  high frequency portion of CDR 

transfer function must not exceed a mask limit

PD Charge
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data(t)
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Example Jitter Transfer Mask

CDR tested for compliance by adding sine wave jitter 
at various frequencies and observing the resulting 
jitter at the CDR output
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Summary of CDR Performance Specifications

Jitter
- Jitter generation
- Jitter tolerance
- Jitter transfer (and peaking)

Acquisition time
- Must be less than 10 ms for many SONET systems

Bit error rates
- Must be less than 1e-12 for many SONET systems
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Phase Detectors in Clock and Data Recovery Circuits

Key issue
- Must accommodate “missing” transition edges in input 

data sequence
Two styles of detection
- Linear – PLL can analyzed in a similar manner as 

frequency synthesizers
- Nonlinear – PLL operates as a bang-bang control 

system (hard to rigorously analyze in many cases)
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Popular CDR Phase Detectors

Linear
- Hogge detector produces an error signal that is 

proportional to the instantaneous phase error
Nonlinear
- Alexander (Bang-bang) detector produces an error signal 

that corresponds to the sign of the instantaneous phase 
error
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A Closer Look at the Hogge Detector

Error output, e(t), consists of two pulses with 
opposite polarity
- Positive polarity pulse has an area that is proportional 

to the phase error between the data and clk- Negative polarity pulse has a fixed area corresponding 
to half of the clk period- Overall area is zero when data edge is aligned to falling 
clk edge
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68M.H. Perrott

Example CDR Settling Characteristic with Hogge PD

CDR tracks out phase error with an exponential 
transition response
Jitter occuring at steady state is due to VCO and 
non-idealities of phase detector
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Modeling of CDR with Hogge Detector

Similar to frequency synthesizer model except
- No divider
- Phase detector gain depends on the transition density 

of the input data
The issue of transition density
- Phase error information of the input data signal is only 

seen when it transitions
VCO can wander in the absence of transitions

- Open loop gain (and therefore the closed loop 
bandwidth) is decreased at low transition densities
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v(t)i(t)
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A Common Loop Filter Implementation

Use a lead/lag filter to implement a type II loop
- Integrator in H(s) forces the steady-state phase error to 

zero (important to minimize jitter)
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Open Loop Response and Closed Loop Pole/Zeros

Key issue:  an undesired pole/zero pair occurs due to 
stabilizing zero in the lead/lag filter 
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Corresponding Closed Loop Frequency Response

Undesired pole/zero pair causes peaking in the closed 
loop frequency response
SONET demands that peaking must be less than 0.1 dB
- For classical lead/lag filter approach, this must be achieved 

by having a very low-valued zero
Requires a large loop filter capacitor

w
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An Interesting Observation

Calculation of closed loop transfer function

Key observation
- Zeros in feedback loop do not appear as zeros in the 

overall closed loop transfer function!
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NB(s)
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Method of Achieving Zero Peaking

We can implement a stabilizing zero in the PLL feedback 
path by using a variable delay element
- Loop filter can now be implemented as a simple integrator

Issue:  delay must support a large range
See T.H. Lee and J.F. Bulzacchelli, “A 155-MHz Clock 
Recovery Delay- and Phase-Locked Loop”, JSSC, Dec 
1992
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Model of CDR with Delay Element

Delay “gain”, Kd, is set by delay implementation
Note that H(s) can be implemented as a simple 
capacitor
- H(s) = 1/(sC)

1
πα Kv

Φout(t)Φdata(t)

s
2π

Hogge Detector

Phase
Sampler VCO

e(t)
H(s)Icp

Charge
Pump

Loop
Filter

α = transition density
0 < α < 1, = 1/2
for PRBS input

v(t)i(t)

Kd

Note:  Kd units
are radians/V

Note:  Kv units
are Hz/V



76M.H. Perrott

Derivation of Zero Produced by Delay Element

Zero set by ratio of delay gain to VCO gain
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Alternate Implementation

Can delay data rather than clk
- Same analysis as before
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The Issue of Data Dependent Jitter

For classical or Bulzacchelli CDR
- Type II PLL dynamics are employed so that steady state 

phase detector error is zero
Issue:  phase detector output influences VCO phase 
through a double integrator operation
- The classical Hogge detector ends up creating data 

dependent jitter at the VCO output
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Culprit Behind Data Dependent Jitter for Hogge PD

The double integral of the e(t) pulse sequence is 
nonzero (i.e., has DC content)
- Since the data transition activity is random, a low 

frequency noise source is created
Low frequency noise not attenuated by PLL dynamics
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One Possible Fix

Modify Hogge so that the double integral of the e(t) 
pulse sequence is zero
- Low frequency noise is now removed

See L. Devito et. al., “A 52 MHz and 155 MHz Clock-
recovery PLL”, ISSCC, Feb, 1991
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A Closer Look at the Bang-Bang Detector

Error output consists of pulses of fixed area that are 
either positive or negative depending on phase error
Pulses occur at data edges
- Data edges detected when sampled data sequence is 

different than its previous value
Above example illustrates the impact of having the 
data edge lagging the clock edge
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A Closer Look at the Bang-Bang Detector (continued)

Above example illustrates the impact of having the 
data edge leading the clk edge
- Error pulses have opposite sign from lagging edge case
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Example CDR Settling Characteristic with Bang-Bang PD

Bang-bang CDR response is slew rate limited
- Much faster than linear CDR, in general

Steady-state jitter often dominated by bang-bang 
behavior (jitter set by error step size and limit cycles)
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The Issue of Limit Cycles

Bang-bang loops exhibit limit cycles during steady-
state operation
- Above diagram shows resulting waveforms when data 

transitions on every cycle
- Signal patterns more complicated for data that randomly 

transitions
For lowest jitter:  want to minimize period of limit cycles
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The Impact of Delays in a Bang-Bang Loop

Delays increase the period of limit cycles, thereby 
increasing jitter

clk(t)e(t) v(t)

VCO

data(t)
Sense DriveDelay

Φclk(t)
Bang-Bang Style
 Phase Detector

Φclk(t)

e(t)

v(t)

Φclk(t)

e(t)

v(t)



86M.H. Perrott

Practical Implementation Issues for Bang-Bang Loops 

Minimize limit cycle periods
- Use phase detector with minimal delay to error output
- Implement a high bandwidth feedforward path in loop 

filter
One possibility is to realize feedforward path in VCO

See B. Lai and R.C Walker, “A Monolithic 622 Mb/s Clock 
Extraction Data Retiming Circuit”, ISSCC, Feb 1991

Avoid dead zones in phase detector
- Cause VCO phase to wonder within the dead zone, 

thereby increasing jitter
Use simulation to examine system behavior
- Nonlinear dynamics can be non-intuitive
- For first order analysis, see R.C. Walter et. al., “A Two-

Chip 1.5-GBd Serial Link Interface”, JSSC, Dec 1992
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Recall the CDR Model (Hogge Det.) From Lecture 21

Similar to frequency synthesizer model except
- No divider
- Phase detector gain depends on the transition density 

of the input data
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Key Observation:  Must Use a Type II Implementation

Integrator in H(s) forces the steady-state phase error to 
zero
- Important to achieve aligned clock and to minimize jitter
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Issue:  Type II System Harder to Design than Type I

A stabilizing zero is required
Undesired closed loop pole/zero doublet causes peaking 
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Delay Locked Loops

Delay element used in place of a VCO
- No integration from voltage input to phase output
- System is Type 1
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System Design Is Easier Than For CDR
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Example Delay-Locked Loop Implementation

Assume an input clock is provided that is perfectly 
matched in frequency to data sequence
- However, phase must be adjusted to compensate for 

propagation delays between clock and data on the PC board
A variable delay element is used to lock phase to 
appropriate value
- Phase detector can be similar to that used in a CDR

Hogge, Bang-Bang, or other structures possible 
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The Catch

Delay needs to support an infinite range if system to be 
operated continuously
- Can otherwise end up at the end of range of delay element

Won’t be able to accommodate temperature variations
Methods have been developed to achieve infinite range 
delay elements
- Efficient implementation of such delay elements is often the 

key issue for high performance designs
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The Myth

Delay locked loop designers always point to jitter 
accumulation problem of phase locked loops
- Implication is that delay locked loops can achieve much lower 

jitter than clock and data recovery circuits
The reality:  phase locked loops can actually achieve lower 
jitter than delay locked loops
- PLL’s can clean up high frequency jitter of input clock- Whether a PLL or DLL is better depends on application (and 

achievable VCO performance)
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One Method of Achieving Infinite Delay

I

Q

φ

cos(2πfint)

cos(2πfint+φ)

cos(2πfint+φ) = cos(2πfint)cos(φ) - sin(2πfint)sin(φ)

Phase shift of a sine wave can be implemented with 
I/Q modulation

Note: infinite delay range allows DLL to be used to 
adjust frequency as well as phase
- Phase adjustment now must vary continuously
- Hard to get low jitter in practical implementations
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Conceptual Implementation of Infinite Delay Range

Practical designs often implement cos(Φ) and sin(Φ) 
signals as phase shifted triangle waves

I

Q

φ

φ
cos(2πfint+φ)

cos(2πfint)cos(2πfint)

sin(φ)

iin(t)

qin(t)
90

o

cos(φ)φ

cos(2πfint)

cos(2πfint+φ)

cos(2πfint+φ)

cos(2πfint)

cos(2πfint+φ) = cos(2πfint)cos(φ) - sin(2πfint)sin(φ)
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Some References on CDR’s and Delay-Locked Loops

Tom Lee et. al. were pioneers of the previous infinite 
range DLL approach
- See T. Lee et. al., “A 2.5 V CMOS Delay-Locked Loop for an 

18 Mbit, 500 Megabyte/s DRAM”, JSSC, Dec 1994
Check out papers from Mark Horowitz’s group at Stanford
- Oversampling data recovery approach

See C-K K. Yang et. al., “A 0.5-um CMOS 4.0-Gbit/s Serial 
Link Transceiver with Data Recovery using Oversampling”, 
JSSC, May 1998

- Multi-level signaling
See Ramin Farjad-Rad et. al., “A 0.3-um CMOS 8-Gb/s 4-
PAM Serial Link Transceiver”, JSSC, May 2000

- Bi-directional signaling
See E. Yeung, “A 2.4 Gb/s/pin simultaneous bidirectional 

parallel link …”, JSSC, Nov 2000
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Summary

Clock and data recovery circuits generate a clock that 
is phase and frequency aligned to an incoming data 
signal
- Jitter characteristics are one of the key performance 

metrics
- Implementations are either linear or bang-bang

Linear is needed for well-defined jitter transfer function
Bang-bang has simpler implementation

Delay locked loops phase align an existing clock to an 
incoming data stream
- Potentially simpler implementation than CDR
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