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What is a Phase-Locked Loop (PLL)?
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VCO efficiently provides oscillating waveform with 
variable frequency
PLL synchronizes VCO frequency to input reference 
frequency through feedback
- Key block is phase detector

Realized as digital gates that create pulsed signals
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Integer-N Frequency Synthesizers

Use digital counter structure to divide VCO frequency
- Constraint:  must divide by integer values

Use PLL to synchronize reference and divider output
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Integer-N Frequency Synthesizers in Wireless Systems

Design Issues:  low noise, fast settling time, low power
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Outline of Integer-N Frequency Synthesizer Talk

PFD
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Overview of PLL Blocks
System Level Modeling
- Transfer function analysis
- Nonlinear behavior
- Type I versus Type II systems

Noise Analysis
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Popular VCO Structures
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-1

LC Oscillator:  low phase noise, large area
Ring Oscillator:  easy to integrate, higher phase noise
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Model for Voltage to Frequency Mapping of VCO
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Time-domain frequency relationship (from previous 
slide)

Time-domain phase relationship

Model for Voltage to Phase Mapping of VCO

1/Fvco= α

1/Fvco= α+ε

out(t)

out(t)

Intuition of integral relationship between frequency and 
phase:
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Frequency-Domain Model for VCO

Time-domain relationship (from previous slide)

Corresponding frequency-domain model

Laplace-Domain

out(t)
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s
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Φout(t)v(t) Kv
jf

VCO

Frequency-Domain
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Divider

Implementation

Time-domain model
- Frequency:

- Phase:

out div(t)

div(t)

out(t)

N

out(t)

count value

N = 6

Counter
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Frequency-Domain Model of Divider

Time-domain relationship between VCO phase and 
divider output phase (from previous slide)

Corresponding frequency-domain model (same as 
Laplace-domain)

out(t) Φout(t)

N
Divider

div(t) Φdiv(t)1

Divider
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Phase Detector (PD)

XOR structure
- Average value of error pulses corresponds to phase error
- Loop filter extracts the average value and feeds to VCO
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1

-1
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Modeling of XOR Phase Detector

Average value of pulses is extracted by loop filter
- Look at detector output over one cycle:

Equation:

T/2

W

1

-1
e(t)
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Relate Pulse Width to Phase Error

Two cases:
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Overall XOR Phase Detector Characteristic
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Frequency-Domain Model of XOR Phase Detector

Assume phase difference confined within 0 to π radians
- Phase detector characteristic looks like a constant gain 

element 

Corresponding frequency-domain model

Φref - Φdiv
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avg{e(t)}
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Loop Filter

Consists of a lowpass filter to extract average of 
phase detector error pulses
Frequency-domain model

First order example
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Overall Linearized PLL Frequency-Domain Model

Combine models of individual components
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Open Loop versus Closed Loop Response

Frequency-domain model

Define A(f) as open loop response
N
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Define G(f) as a parameterizing closed loop function
- More details later in this lecture
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Classical PLL Transfer Function Design Approach

1. Choose an appropriate topology for H(f)
Usually chosen from a small set of possibilities

2. Choose pole/zero values for H(f) as appropriate for 
the required filtering of the phase detector output

Constraint:  set pole/zero locations higher than 
desired PLL bandwidth to allow stable dynamics to 
be possible

3. Adjust the open-loop gain to achieve the required 
bandwidth while maintaining stability

Plot gain and phase bode plots of A(f)
Use phase (or gain) margin criterion to infer stability
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Example:  First Order Loop Filter

Overall PLL block diagram

Loop filter
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Closed Loop Poles Versus Open Loop Gain

Higher open loop gain leads to an increase in Q of 
closed loop poles
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Corresponding Closed Loop Response

Increase in open loop gain leads to
- Peaking in closed loop frequency response
- Ringing in closed loop step response
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The Impact of Parasitic Poles

Loop filter and VCO may have additional parasitic 
poles and zeros due to their circuit implementation
We can model such parasitics by including them in 
the loop filter transfer function
Example:  add two parasitic poles to first order filter

C1

R1e(t) v(t)
Parasitics
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Closed Loop Poles Versus Open Loop Gain
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Corresponding Closed Loop Response

Increase in open loop gain now eventually leads to 
instability
- Large peaking in closed loop frequency response
- Increasing amplitude in closed loop step response

0 dB

Closed Loop Frequency Response Closed Loop Step Response

1

TimeFrequency

A

C

B

CB

A
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Response of PLL to Divide Value Changes

Change in output frequency achieved by changing the 
divide value
Classical approach provides no direct model of 
impact of divide value variations
- Treat divide value variation as a perturbation to a linear 

system
PLL responds according to its closed loop response
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Response of an Actual PLL to Divide Value Change

Example:  Change divide value by one
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What Happens with Large Divide Value Variations?

PLL temporarily loses frequency lock (cycle slipping 
occurs)

- Why does this happen?
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Recall Phase Detector Characteristic

To simplify modeling, we assumed that we always 
operated in a confined phase range (0 to π)
- Led to a simple PD model

Large perturbations knock us out of that confined 
phase range
- PD behavior varies depending on the phase range it 

happens to be in

Φref - Φdiv
ππ/2−π/2−π 0

avg{e(t)}

1

-1

gain = 2/πgain = -2/π
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Cycle Slipping

Consider the case where there is a frequency offset 
between divider output and reference
- We know that phase difference will accumulate

Resulting ramp in phase causes PD characteristic to 
be swept across its different regions (cycle slipping)

Φref - Φdiv
ππ/2−π/2−π 0

avg{e(t)}
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Impact of Cycle Slipping

Loop filter averages out phase detector output
Severe cycle slipping causes phase detector to 
alternate between regions very quickly
- Average value of XOR characteristic can be close to 

zero
- PLL frequency oscillates according to cycle slipping
- In severe cases, PLL will not re-lock

PLL has finite frequency lock-in range!

π−π 3π nπ (n+2)π

1

-1

XOR DC characteristic
cycle slipping
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Back to PLL Response Shown Previously

PLL output frequency indeed oscillates
- Eventually locks when frequency difference is small enough

- How do we extend the frequency lock-in range?
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Phase Frequency Detectors (PFD)
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Example:  Tristate PFD
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Tristate PFD Characteristic

Calculate using similar approach as used for XOR 
phase detector

Note that phase error characteristic is asymmetric 
about zero phase
- Key attribute for enabling frequency detection
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PFD Enables PLL to Always Regain Frequency Lock

Asymmetric phase error characteristic allows positive 
frequency differences to be distinguished from 
negative frequency differences 
- Average value is now positive or negative according to 

sign of frequency offset
- PLL will always relock

Φref - Φdiv2π 4π 2nπ
−2π

1

-1

Tristate DC characteristic

cycle slipping

0

lock
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Another PFD Structure

XOR-based PFD
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XOR-based PFD Characteristic

Calculate using similar approach as used for XOR phase 
detector

Phase error characteristic asymmetric about zero phase
- Average value of phase error is positive or negative during 

cycle slipping depending on sign of frequency error

2ππ−2π 5π4π
−3π

1

−1

avg{e(t)}

phase detector
range = 2π

gain = 1/π

Φref - Φdiv0
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Linearized PLL Model With PFD Structures

Assume that when PLL in lock, phase variations are 
within the linear range of PFD
- Simulate impact of cycle slipping if desired (do not 

include its effect in model)
Same frequency-domain PLL model as before, but 
PFD gain depends on topology used
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Tristate:  α=1
XOR-based:  α=2
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Type I versus Type II PLL Implementations

Type I: one integrator in PLL open loop transfer 
function
- VCO adds on integrator
- Loop filter, H(f), has no integrators

Type II:  two integrators in PLL open loop transfer 
function
- Loop filter, H(f), has one integrator
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DC output range of gain block versus integrator

Issue:  DC gain of loop filter often small and PFD 
output range is limited
- Loop filter output fails to cover full input range of VCO

VCO Input Range Issue for Type I PLL Implementations

PFD
Loop
Filter
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ref(t) out(t)

Divider
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Options for Achieving Full Range Span of VCO

Loop
Filter

D/A

e(t) v(t)
C.P.

VDD

Gnd

Output Range
of Loop FilterCourse

Tune

No
Integrator

Loop
Filter

e(t) v(t)
C.P.

VDD

Gnd

Output Range
of Loop Filter

Contains
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Type I Type II

Type I
- Add a D/A converter to provide coarse tuning

Adds power and complexity
Steady-state phase error inconsistently set

Type II
- Integrator automatically provides DC level shifting

Low power and simple implementation
Steady-state phase error always set to zero
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A Common Loop Filter for Type II PLL Implementation

Use a charge pump to create the integrator
- Current onto a capacitor forms integrator
- Add extra pole/zero using resistor and capacitor

Gain of loop filter can be adjusted according to the 
value of the charge pump current
Example:  lead/lag network

C1
C2

R1

v(t)e(t) Charge
Pump

i(t)
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Charge Pump Implementations

Switch currents in and out:

e(t)down(t) e(t)

Iout(t)
Iout(t)

Icp

Icp 2Icp

Icp Icp

Single-Ended Differential

up(t)
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Modeling of Loop Filter/Charge Pump

Charge pump is gain element
Loop filter forms transfer function

Example:  lead/lag network from previous slide

e(t) v(t)
H(s)Icp

Loop
Filter

Charge
Pump
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PLL Design with Lead/Lag Filter

Overall PLL block diagram

Loop filter

Set open loop gain to achieve adequate phase margin
- Set fz lower than and fp higher than desired PLL bandwidth
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Closed Loop Poles Versus Open Loop Gain

Open loop gain cannot be too low or too high if 
reasonable phase margin is desired
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Impact of Parasitics When Lead/Lag Filter Used

We can again model impact of parasitics by including 
them in loop filter transfer function

Example:  include two parasitic poles with the lead/lag 
transfer function

C1
C2

R1

e(t) Charge
Pump

i(t) v(t)
Parasitics
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Closed Loop Poles Versus Open Loop Gain

Closed loop response becomes unstable if open loop 
gain is too high
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Negative Issues For Type II PLL Implementations

Parasitic pole/zero pair causes
- Peaking in the closed loop frequency response

A big issue for CDR systems, but not too bad for wireless
- Extended settling time due to parasitic “tail” response

Bad for wireless systems demanding fast settling time

f
fofz

fzfcp

|G(f)|
Peaking caused by

undesired pole/zero pair

0

1

Frequency (Hz)

0 1 2 3 4

0.6

1

1.4

Normalized time: t*fo

N
or

m
al

iz
ed

 A
m

pl
itu

de

Step Responses for a Second Order
G(f) implemented as a Bessel Filter

Type II:  fz/fo = 1/3

Type II:  fz/fo = 1/8

Type I
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Summary of Integer-N Dynamic Modeling

Linearized models can be derived for each PLL block
- Resulting transfer function model of PLL is accurate for 

small perturbations in PLL
- Linear PLL model breaks down for large perturbations 

on PLL, such as a large step change in frequency
Cycle slipping is key nonlinear effect

Key issues for designing PLL are
- Achieve stable operation with desired bandwidth
- Allow full range of VCO with a simple implementation

Type II PLL is very popular to achieve this 



Noise Analysis of Integer-N Synthesizers



53M.H. Perrott

Frequency Synthesizer Noise in Wireless Systems

Synthesizer noise has a negative impact on system
- Receiver – lower sensitivity, poorer blocking performance- Transmitter – increased spectral emissions (output spectrum 

must meet a mask requirement)
Noise is characterized in frequency domain
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Noise Modeling for Frequency Synthesizers

PLL has an impact on VCO noise in two ways
- Adds extrinsic noise from various PLL circuits
- Highpass filters VCO noise through PLL feedback dynamics

Focus on modeling the above based on phase deviations
- Simpler than dealing directly with PLL sine wave output

vin(t)vc(t)

vn(t)

PLL dynamics
set VCO

carrier frequency f

Phase
Noise

fo

Sout(f)

Extrinsic noise
(from PLL)

out(t)

Intrinsic
noise

To PLL
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vin(t)vc(t)

vn(t)

PLL dynamics
set VCO

carrier frequency f

Phase
Noise

fo

Frequency-domain view
Sout(f)

Extrinsic noise
(from PLL)

Intrinsic
noise

2πKv
s

Φout

Φvn(t)

2cos(2πfot+Φout(t))
out(t)

To PLL

Phase Deviation Model for Noise Analysis

Model the impact of noise on instantaneous phase
- Relationship between PLL output and instantaneous phase

- Output spectrum (we will derive this in a later lecture)

Note:  Kv units are Hz/V
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Phase noise is non-periodic

- Described as a spectral density relative to carrier power

Spurious noise is periodic

- Described as tone power relative to carrier power

Phase Noise Versus Spurious Noise

SΦout(f)
Sout(f)

f
-fo fo

1
dBc/Hz

Sout(f)

f
-fo fo

dBc
1

fspur

2
1 dspur
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2
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Sources of Noise in Frequency Synthesizers

Extrinsic noise sources to VCO
- Reference/divider jitter and reference feedthrough
- Charge pump noise

PFD Charge
Pump

e(t) v(t)
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Filter
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Modeling the Impact of Noise on Output Phase of PLL

Determine impact on output phase by deriving 
transfer function from each noise source to PLL 
output phase
- There are a lot of transfer functions to keep track of!
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Simplified Noise Model

Refer all PLL noise sources (other than the VCO) to 
the PFD output
- PFD-referred noise corresponds to the sum of these 

noise sources referred to the PFD output
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Impact of PFD-referred Noise on Synthesizer Output

Transfer function derived using Black’s formula

Φdiv[k]

Φref [k] KV

jf

v(t) Φout(t)
H(f)

1
N

�π
α e(t)

Φvn(t)en(t)

Icp

VCO-referred
Noise

f
0

SEn
(f)

PFD-referred
Noise

1/T f0

SΦvn
(f)

-20 dB/dec

PFD
Charge
Pump

Loop
Filter

Divider

VCO



61M.H. Perrott

Impact of VCO-referred Noise on Synthesizer Output 

Transfer function again derived from Black’s formula
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A Simpler Parameterization for PLL Transfer Functions

Define G(f) as

- A(f) is the open loop transfer function of the PLL
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Parameterize Noise Transfer Functions in Terms of G(f)

PFD-referred noise

VCO-referred noise
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Parameterized PLL Noise Model

PFD-referred noise is lowpass filtered
VCO-referred noise is highpass filtered
Both filters have the same transition frequency values
- Defined as fo
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Impact of PLL Parameters on Noise Scaling

PFD-referred noise is scaled by square of divide value 
and inverse of PFD gain
- High divide values lead to large multiplication of this noise

VCO-referred noise is not scaled (only filtered)
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Optimal Bandwidth Setting for Minimum Noise

Optimal bandwidth is where scaled noise sources meet
- Higher bandwidth will pass more PFD-referred noise
- Lower bandwidth will pass more VCO-referred noise
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Resulting Output Noise with Optimal Bandwidth

PFD-referred noise dominates at low frequencies
- Corresponds to close-in phase noise of synthesizer

VCO-referred noise dominates at high frequencies
- Corresponds to far-away phase noise of synthesizer
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Analysis of Charge Pump Noise Impact 

We can refer charge pump noise to PFD output by 
simply scaling it by 1/Icp
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Calculation of Charge Pump Noise Impact

Contribution of charge pump noise to overall output noise

- Need to determine impact of Icp on SIcpn(f)
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Impact of Transistor Current Value on its Noise

Charge pump noise will be related to the current it 
creates as

Recall that gdo is the channel resistance at zero Vds- At a fixed current density, we have

M2M1

Ibias

current
source

current 
bias

Id

idbias
2 id

2

Cbig

W
L



71M.H. Perrott

Impact of Charge Pump Current Value on Output Noise

Recall

Given previous slide, we can say

- Assumes a fixed current density for the key transistors 
in the charge pump as Icp is varied

Therefore

- Want high charge pump current to achieve low noise
- Limitation set by power and area considerations
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Impact of Synthesizer Noise on Transmitters

Synthesizer noise can be lumped into two categories
- Close-in phase noise:  reduces SNR of modulated signal
- Far-away phase noise:  creates spectral emissions outside 

the desired transmit channel
This is the critical issue for transmitters
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Impact of Remaining Portion of Transmitter

Power amplifier
- Nonlinearity will increase out-of-band emission and create 

harmonic content
Band select filter
- Removes harmonic content, but not out-of-band emission
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Why is Out-of-Band Emission A Problem?

Near-far problem
- Interfering transmitter closer to receiver than desired 

transmitter
- Out-of-emission requirements must be stringent to 

prevent complete corruption of desired signal

Transmitter
        2   Base
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Transmitter
        1

 Desired
 Channel( )

Interfering
  Channel( )

 Relative
   Power
Difference
    (dB)

 Desired
 Channel

Interfering
  Channel
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Specification of Out-of-Band Emissions

Maximum radiated power is specified in desired and 
adjacent channels
- Desired channel power:  maximum is M0 dBm
- Out-of-band emission:  maximum power defined as 

integration of transmitted spectral density over 
bandwidth R centered at midpoint of each channel offset
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RF Output
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(dBm) M0 dBm

M1 dBm

M2 dBm

Channel Spacing
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Calculation of Transmitted Power in a Given Channel

For simplicity, assume that the spectral density is flat 
over the channel bandwidth
- Actual spectral density of signal often varies with 

frequency over the bandwidth of a given channel
Resulting power calculation (single-sided Sx(f))

Express in dB ( Note: dB(x) = 10log(x) )

R Hz R Hz

fmid

Sx(fmid) Sx(fmid)

fmid
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Transmitter Output Versus Emission Specification

Assume a piecewise constant spectral density profile 
for transmitter
- Simplifies calculations

Issue: emission specification is measured over a 
narrower band than channel spacing
- Need to account for bandwidth discrepancy when doing 

calculations
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Correction Factor for Bandwidth Mismatch

Calculation of maximum emission in offset channel 1
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Out-of-band emission requirements are function of 
the power of the signal in the desired channel
- For offset channel 1 (as calculated on previous slide)

- Most stringent case is when Y0 maximum

Condition for Most Stringent Emission Requirement
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Table of Most Stringent Emission Requirements
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Impact of Synthesizer Noise on Transmitter Output

Consider a spurious tone at a given offset frequency
- Convolution with IF signal produces a replica of the 

desired signal at the given offset frequency
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Impact of Synthesizer Phase Noise (Isolated Channel)

Consider phase noise at a given offset frequency
- Convolution with IF signal produces a smeared version 

of the desired signal at the given offset frequency
For simplicity, approximate smeared signal as shown
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Impact of Synthesizer Phase Noise (All Channels)

Partition synthesizer phase noise into channels
- Required phase noise power (dBc) in each channel is 

related directly to spectral mask requirements
Exception is X0 – set by transmit SNR requirements

f
fLO

Synthesizer
Spectrum

(dBc)
X0 dBc

0 dBc

X1 dBc
X2 dBc

ffRF

RF Output
(dBm)

M0 dBm

M0+X1 dBm

IF

LO

RF

fIF
f

IF Input
(dBm)

To 
Antenna

Band Select
Filter

PA

Channel Spacing
= W Hz

Channel Spacing
= W Hz

X3 dBc

M0+X3 dBm
M0+X2 dBm



84M.H. Perrott

Synthesizer Phase Noise Requirements

Impact of channel bandwidth (offset channel 1)

Overall requirements (most stringent, i.e., Y0 = M0)
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Example – DECT Cordless Telephone Standard

Standard for many cordless phones operating at 1.8 GHz
Transmitter Specifications
- Channel spacing:  W = 1.728 MHz
- Maximum output power:  Mo = 250 mW (24 dBm)
- Integration bandwidth: R = 1 MHz
- Emission mask requirements
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Synthesizer Phase Noise Requirements for DECT

Using previous calculations with DECT values

Graphical display of phase noise mask

-8 dBm X1 = -29.6 dBc
X2 = -51.6 dBc

-92 dBc/Hz
-114 dBc/Hz

24 dBm

 -30 dBm 

Channel
Offset

Mask
Power

Maximum Synth. Noise
Power in Integration BW

Maximum Synth. Phase Noise
 at Channel Offset

0
1.728 MHz
3.456 MHz

X3 = -65.6 dBc -128 dBc/Hz-44 dBm5.184 MHz

set by required transmit SNR

ffLO

Synthesizer
Spectrum

(dBc)
-92 dBc/Hz

-114 dBc/Hz

-128 dBc/Hz

Channel Spacing = 1.728 MHz
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Critical Specification for Phase Noise

Critical specification is defined to be the one that is 
hardest to meet with an assumed phase noise rolloff
- Assume synthesizer phase noise rolls off at -20 

dB/decade
Corresponds to VCO phase noise characteristic

For DECT transmitter synthesizer
- Critical specification is -128 dBc/Hz at 5.184 MHz offset
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Spectrum
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0 dBc

-114 dBc/Hz

-128 dBc/Hz

Channel Spacing = 1.728 MHz

Phase Noise
Rolloff: -20 dB/dec

Critical
Spec.
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Receiver Blocking Performance

Radio receivers must operate in the presence of large 
interferers (called blockers)
Channel filter plays critical role in removing blockers 

Passes desired signal channel, rejects interferers
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Impact of Nonidealities on Blocking Performance

Blockers leak into desired band due to
- Nonlinearity of LNA and mixer (IIP3)
- Synthesizer phase and spurious noise

In-band interference cannot be removed by channel filter!
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Quantifying Tolerable In-Band Interference Levels

Digital radios quantify performance with bit error rate (BER)
- Minimum BER often set at 1e-3 for many radio systems
- There is a corresponding minimum SNR that must be achieved

Goal:  design so that SNR with interferers is above SNRmin
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Impact of Synthesizer on Blockers

Synthesizer passes desired signal and blocker
- Assume blocker is Y dB higher in signal power than 

desired signal
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Impact of Synthesizer Spurious Noise on Blockers

Spurious tones cause the blocker (Y dB) (and desired) 
signals to “leak” into other frequency bands
- In-band interference occurs when spurious tone offset 

frequency is same as blocker offset frequency
- Resulting SNR = -X-Y dB with spurious tone (X dBc)
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Impact of Synthesizer Phase Noise on Blockers

Same impact as spurious tone, but blocker signal is 
“smeared” by convolution with phase noise
- For simplicity, ignore “smearing” and approximate as 

shown above
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Blocking Performance Analysis (Part 1)

Ignore all out-of-band energy at the IF output
- Assume that channel filter removes it
- Motivation:  simplifies analysis
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Blocking Performance Analysis (Part 2)

Consider the impact of blockers surrounding the 
desired signal with a given phase noise profile
- SNRmin must be maintained
- Evaluate impact on SNR one blocker at a time
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Blocking Performance Analysis (Part 3)
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Blocking Performance Analysis (Part 4)
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Example – DECT Cordless Telephone Standard

Receiver blocking specifications
- Channel spacing:  W = 1.728 MHz
- Power of desired signal for blocking test:  -73 dBm
- Minimum bit error rate (BER) with blockers:  1e-3

Sets the value of SNRmin

Perform receiver simulations to determine SNRmin

Assume SNRmin = 15 dB for calculations to follow
- Strength of interferers for blocking test
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Synthesizer Phase Noise Requirements for DECT
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-58 dBm
-39 dBm
-33 dBm

X3 dBc



100M.H. Perrott

Graphical Display of Required Phase Noise Performance

Mark phase noise requirements at each offset frequency

Calculate critical specification for receive synthesizer
- Critical specification is -117 dBc/Hz at 5.184 MHz offset

Lower performance demanded of receiver synthesizer than 
transmitter synthesizer in DECT applications!

ffLO

Synthesizer
Spectrum

(dBc)

-92 dBc/Hz

0 dBc

-111 dBc/Hz

-117 dBc/Hz

Channel Spacing = 1.728 MHz

Phase Noise
Rolloff: -20 dB/dec

Critical
Spec.
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Summary of Noise Analysis of Integer-N Synthesizers

Key PLL noise sources are
- VCO noise (we will cover in detail tomorrow)
- PFD-referred noise

Charge pump noise, reference noise, etc.

Setting of PLL bandwidth has strong impact on noise
- High PLL bandwidth suppresses VCO noise
- Low PLL bandwidth suppresses PFD-referred noise

Noise performance required of PLL depends on 
application
- Wireless transmitter:  must meek spectral mask
- Wireless receiver:  must suppress blockers and achieve 

good SNR for received signal
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