What is a Phase-Locked Loop (PLL)?

- VCO efficiently provides oscillating waveform with variable frequency
- PLL synchronizes VCO frequency to input reference frequency through feedback
 - Key block is phase detector
 - Realized as digital gates that create pulsed signals

de Bellescize Onde Electr, 1932
Use digital counter structure to divide VCO frequency
- Constraint: must divide by integer values
- Use PLL to synchronize reference and divider output

Output frequency is digitally controlled
Integer-N Frequency Synthesizers in Wireless Systems

- **Design Issues:** low noise, fast settling time, low power

M.H. Perrott
Fractional-N Frequency Synthesizers

- Dither divide value to achieve fractional divide values
 - PLL loop filter smooths the resulting variations

Very high frequency resolution is achieved
Going Digital …

- Digital loop filter: compact area, insensitive to leakage
- Challenges:
 - Time-to-Digital Converter (TDC)
 - Digitally-Controlled Oscillator (DCO)

Staszewski et. al., TCAS II, Nov 2003
Outline of PLL Short Course

- Analog frequency synthesizers
 - Integer-N synthesizers and PLL background
 - Fractional-N synthesizers
- Digital frequency synthesizers
 - Modeling and noise analysis
 - Time-to-digital conversion
Outline of Integer-N Frequency Synthesizer Talk

- Overview of PLL Blocks
- System Level Modeling
 - Transfer function analysis
 - Nonlinear behavior
 - Type I versus Type II systems
- Noise Analysis
Popular VCO Structures

- **LC Oscillator**: low phase noise, large area
- **Ring Oscillator**: easy to integrate, higher phase noise
Model for Voltage to Frequency Mapping of VCO

\[F_{out}(t) = K_v v(t) \]
Model for Voltage to Phase Mapping of VCO

- Time-domain frequency relationship (from previous slide)

\[F_{out}(t) = K_v v(t) \]

- Time-domain phase relationship

\[\Phi_{out}(t) = \int_{-\infty}^{t} 2\pi F_{out}(\tau) d\tau = \int_{-\infty}^{t} 2\pi K_v v(\tau) d\tau \]

- Intuition of integral relationship between frequency and phase:
Frequency-Domain Model for VCO

- Time-domain relationship (from previous slide)

\[
\Phi_{out}(t) = \int_{-\infty}^{t} 2\pi K_v v(\tau) d\tau
\]

- Corresponding frequency-domain model
Divider

- Implementation

\[\text{Counter} \]

\(N \rightarrow \text{count value} \)
\(\text{out(t)} \rightarrow \text{div(t)} \)

\(\text{out(t)} \)

\(\text{div(t)} \)

\(N = 6 \)

- Time-domain model
 - Frequency:
 \[F_{div}(t) = \frac{1}{N} F_{out}(t). \]
 - Phase:
 \[\Phi_{div}(t) = \int_{-\infty}^{t} 2\pi \frac{1}{N} F_{out}(\tau) d\tau = \frac{1}{N} \Phi_{out}(t) \]
Frequency-Domain Model of Divider

- Time-domain relationship between VCO phase and divider output phase (from previous slide)

\[\Phi_{\text{div}}(t) = \frac{1}{N} \Phi_{\text{out}}(t) \]

- Corresponding frequency-domain model (same as Laplace-domain)

\[\Phi_{\text{out}}(t) \rightarrow \text{Divider} \rightarrow \Phi_{\text{div}}(t) \]

\[\frac{1}{N} \]

\[\text{Divider} \]
Phase Detector (PD)

- **XOR structure**
 - Average value of error pulses corresponds to phase error
 - Loop filter extracts the average value and feeds to VCO

![Diagram of Phase Detector](image)
XOR Phase Detector Characteristic

\[
\Phi_{\text{ref}} - \Phi_{\text{div}}
\]

Range:

- \(-\pi < \Phi_{\text{ref}} - \Phi_{\text{div}} < 0\)
- \(0 < \Phi_{\text{ref}} - \Phi_{\text{div}} < \pi\)

Equations:

\[
W = \left(\frac{\Phi_{\text{ref}} - \Phi_{\text{div}}}{\pi}\right)T/2
\]

Graphical Representation:

- **avg\{e(t)\}**
 - Gain = \(-2/\pi\)
 - Gain = \(2/\pi\)

Phase Detector Range:

- \(-\pi\) to \(\pi\)

Characteristics:

- Gain: \(2/\pi\)
- Gain: \(-2/\pi\)

Phase Detector Range:

- Range = \(\pi\)
Assume phase difference confined within 0 to π radians
- Phase detector characteristic looks like a constant gain element

Corresponding frequency-domain model
Loop Filter

- Consists of a lowpass filter to extract average of phase detector error pulses
- Frequency-domain model

First order example

\[H(s) = \frac{1}{1 + sR_1C_1} \]
Overall Linearized PLL Frequency-Domain Model

- Combine models of individual components

Laplace-Domain Model

Frequency-Domain Model

\[e(t) \xrightarrow{\text{Loop Filter}} v(t) \xrightarrow{\text{VCO}} \Phi_{\text{out}}(t) \]

\[\Phi_{\text{ref}}(t) \xrightarrow{\text{XOR PD}} 2 \pi \xrightarrow{\text{Loop Filter}} H(s) \xrightarrow{\text{Divider}} \Phi_{\text{div}}(t) \]

\[\Phi_{\text{div}}(t) \]

\[v(t) \xrightarrow{\text{VCO}} \Phi_{\text{out}}(t) \]

\[2\pi K_v \frac{s}{s} \]

\[\frac{1}{N} \]

\[M.H. \ Perrott \]
Open Loop versus Closed Loop Response

- **Frequency-domain model**

 ![Diagram](image)

 - Define $A(f)$ as **open loop response**

 $$A(f) = \frac{2}{\pi} H(f) \left(\frac{K_v}{j f} \right) \frac{1}{N}$$

 - Define $G(f)$ as a parameterizing **closed loop function**
 - More details later in this lecture

 $$G(f) = \frac{A(f)}{1 + A(f)}$$
Classical PLL Transfer Function Design Approach

1. Choose an appropriate topology for $H(f)$
 - Usually chosen from a small set of possibilities

2. Choose pole/zero values for $H(f)$ as appropriate for the required filtering of the phase detector output
 - Constraint: set pole/zero locations higher than desired PLL bandwidth to allow stable dynamics to be possible

3. Adjust the open-loop gain to achieve the required bandwidth while maintaining stability
 - Plot gain and phase bode plots of $A(f)$
 - Use phase (or gain) margin criterion to infer stability
Example: First Order Loop Filter

- Overall PLL block diagram

- Loop filter

\[H(f) = \frac{1}{1 + jf/f_p} \]
Higher open loop gain leads to an increase in Q of closed loop poles
Increase in open loop gain leads to
- Peaking in closed loop frequency response
- Ringing in closed loop step response
The Impact of Parasitic Poles

- Loop filter and VCO may have additional parasitic poles and zeros due to their circuit implementation.
- We can model such parasitics by including them in the loop filter transfer function.
- Example: add two parasitic poles to first order filter.

\[
H(f) = \left(\frac{1}{1 + jf/f_1} \right) \left(\frac{1}{1 + jf/f_2} \right) \left(\frac{1}{1 + jf/f_3} \right)
\]
Closed Loop Poles Versus Open Loop Gain

Evaluation of Phase Margin

Open loop gain increased

20log|A(f)|

0 dB

f

angle(A(f))

-90°

-165°

-180°

-240°

-315°

Dominant pole pair

Non-dominant poles

PM = 72° for A

PM = 51° for B

PM = -12° for C

Closed Loop Pole Locations of G(f)

Im{s}

Re{s}

0

C

B

A

A

B

C

Evaluation of Phase Margin

Closed Loop Pole Locations of G(f)
Corresponding Closed Loop Response

- Increase in open loop gain now eventually leads to instability
 - Large peaking in closed loop frequency response
 - Increasing amplitude in closed loop step response
Response of PLL to Divide Value Changes

- Change in output frequency achieved by changing the divide value
- Classical approach provides no direct model of impact of divide value variations
 - Treat divide value variation as a perturbation to a linear system
 - PLL responds according to its closed loop response
Response of an Actual PLL to Divide Value Change

- Example: Change divide value by one

PLL responds according to closed loop response!
What Happens with Large Divide Value Variations?

- PLL temporarily loses frequency lock (cycle slipping occurs)

Why does this happen?
To simplify modeling, we assumed that we always operated in a confined phase range (0 to π)
- Led to a simple PD model

Large perturbations knock us out of that confined phase range
- PD behavior varies depending on the phase range it happens to be in
Cycle Slipping

- Consider the case where there is a frequency offset between divider output and reference
 - We know that phase difference will accumulate

- Resulting ramp in phase causes PD characteristic to be swept across its different regions (cycle slipping)
Impact of Cycle Slipping

- Loop filter averages out phase detector output
- Severe cycle slipping causes phase detector to alternate between regions very quickly
 - Average value of XOR characteristic can be close to zero
 - PLL frequency oscillates according to cycle slipping
 - In severe cases, PLL will not re-lock
 - PLL has finite frequency lock-in range!

XOR DC characteristic

\[
\begin{align*}
\Phi_{\text{ref}} - \Phi_{\text{div}}
\end{align*}
\]

\[\pi - \pi\]

\[\pi(n+2)\]

-1

1

-\pi

\pi

3\pi

n\pi

(n+2)\pi

M.H. Perrott
PLL output frequency indeed oscillates
 - Eventually locks when frequency difference is small enough

- How do we extend the frequency lock-in range?
Phase Frequency Detectors (PFD)

- Example: Tristate PFD
Tristate PFD Characteristic

- Calculate using similar approach as used for XOR phase detector

\[\text{avg}\{e(t)\} \]

\[\text{gain} = \frac{1}{2\pi} \]

- Note that phase error characteristic is asymmetric about zero phase
 - Key attribute for enabling frequency detection
PFD Enables PLL to Always Regain Frequency Lock

- Asymmetric phase error characteristic allows positive frequency differences to be distinguished from negative frequency differences
 - Average value is now positive or negative according to sign of frequency offset
 - PLL will always relock
Another PFD Structure

- XOR-based PFD
XOR-based PFD Characteristic

- Calculate using similar approach as used for XOR phase detector

\[
\text{avg}\{e(t)\} = \begin{cases}
1 & \text{gain } = 1/\pi \\
0 & \text{otherwise}
\end{cases}
\]

- Phase error characteristic asymmetric about zero phase
 - Average value of phase error is positive or negative during cycle slipping depending on sign of frequency error
Linearized PLL Model With PFD Structures

- Assume that when PLL in lock, phase variations are within the linear range of PFD
 - Simulate impact of cycle slipping if desired (do not include its effect in model)
- Same frequency-domain PLL model as before, but PFD gain depends on topology used

\[\Phi_{\text{ref}}(t) \rightarrow + \rightarrow \frac{\alpha}{2\pi} \rightarrow e(t) \rightarrow H(f) \rightarrow v(t) \rightarrow K_v \frac{jf}{j} \rightarrow \Phi_{\text{out}}(t) \]

- Tristate: \(\alpha=1 \)
- XOR-based: \(\alpha=2 \)

\[\Phi_{\text{div}}(t) \rightarrow \text{Divider} \rightarrow \frac{1}{N} \]

M.H. Perrott
Type I versus Type II PLL Implementations

- **Type I**: one integrator in PLL open loop transfer function
 - VCO adds on integrator
 - Loop filter, $H(f)$, has no integrators
- **Type II**: two integrators in PLL open loop transfer function
 - Loop filter, $H(f)$, has one integrator
VCO Input Range Issue for Type I PLL Implementations

- DC output range of gain block versus integrator

- Issue: DC gain of loop filter often small and PFD output range is limited
 - Loop filter output fails to cover full input range of VCO
Options for Achieving Full Range Span of VCO

- **Type I**
 - Add a D/A converter to provide coarse tuning
 - Adds power and complexity
 - Steady-state phase error inconsistently set

- **Type II**
 - Integrator automatically provides DC level shifting
 - Low power and simple implementation
 - Steady-state phase error always set to zero
A Common Loop Filter for Type II PLL Implementation

- Use a charge pump to create the integrator
 - Current onto a capacitor forms integrator
 - Add extra pole/zero using resistor and capacitor
- Gain of loop filter can be adjusted according to the value of the charge pump current
- Example: lead/lag network
Charge Pump Implementations

- Switch currents in and out:
Modeling of Loop Filter/Charge Pump

- Charge pump is gain element
- Loop filter forms transfer function

- Example: lead/lag network from previous slide

\[H(f) = \left(\frac{1}{sC_{sum}} \right) \frac{1 + jf/f_z}{1 + jf/f_p} \]

\[C_{sum} = C_1 + C_2, \quad f_z = \frac{1}{2\pi R_1 C_2}, \quad f_p = \frac{C_1 + C_2}{2\pi R_1 C_1 C_2} \]
PLL Design with Lead/Lag Filter

- Overall PLL block diagram

\[
H(f) = \left(\frac{1}{sC_{sum}} \right) \frac{1 + jf/f_z}{1 + jf/f_p}
\]

- Loop filter

- Set open loop gain to achieve adequate phase margin
 - Set \(f_z \) lower than and \(f_p \) higher than desired PLL bandwidth
Closed Loop Poles Versus Open Loop Gain

Evaluation of Phase Margin

- Open loop gain cannot be too low or too high if reasonable phase margin is desired.

Closed Loop Pole Locations of G(f)

- Dominant pole pair
- Non-dominant pole

- Evaluation of Phase Margin
- Closed Loop Pole Locations of G(f)

Graphs

- Plot of $\angle(A(f))$ vs. frequency f
- Plot of $20\log|A(f)|$ vs. frequency f
- Phase margin PM for C, A, B:
 - PM = 54° for B
 - PM = 53° for A
 - PM = 55° for C

Diagrams

- Diagram showing pole locations and phase margin

M.H. Perrott
Impact of Parasitics When Lead/Lag Filter Used

- We can again model impact of parasitics by including them in loop filter transfer function

\[H(f) = \left(\frac{1}{sC_{sum}} \right) \frac{1 + jf/f_z}{1 + jf/f_p} \left(\frac{1}{1 + jf/f_{p2}} \right) \left(\frac{1}{1 + jf/f_{p3}} \right) \]

- Example: include two parasitic poles with the lead/lag transfer function
Closed loop response becomes unstable if open loop gain is too high.
Negative Issues For Type II PLL Implementations

- Parasitic pole/zero pair causes
 - Peaking in the closed loop frequency response
 - Extended settling time due to parasitic “tail” response
 - Bad for wireless systems demanding fast settling time
Summary of Integer-N Dynamic Modeling

- Linearized models can be derived for each PLL block
 - Resulting transfer function model of PLL is accurate for small perturbations in PLL
 - Linear PLL model breaks down for large perturbations on PLL, such as a large step change in frequency
 - Cycle slipping is key nonlinear effect

- Key issues for designing PLL are
 - Achieve stable operation with desired bandwidth
 - Allow full range of VCO with a simple implementation
 - Type II PLL is very popular to achieve this
Synthesizer noise has a negative impact on system
- Receiver – lower sensitivity, poorer blocking performance
- Transmitter – increased spectral emissions (output spectrum must meet a mask requirement)

Noise is characterized in frequency domain
Phase Noise Versus Spurious Noise

- **Phase noise is non-periodic**

 &n...
Sources of Noise in Frequency Synthesizers

- **Extrinsic noise sources to VCO**
 - Reference/divider jitter and reference feedthrough
 - Charge pump noise
Determine impact on output phase by deriving transfer function from each noise source to PLL output phase
- There are a lot of transfer functions to keep track of!
Refer all PLL noise sources (other than the VCO) to the PFD output

- PFD-referred noise corresponds to the sum of these noise sources referred to the PFD output
Impact of PFD-referred Noise on Synthesizer Output

Transfer function derived using Black’s formula

\[
\frac{\Phi_{out}}{e_n} = \frac{I_{cp}H(f)K_v/(jf)}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}
\]
Impact of VCO-referred Noise on Synthesizer Output

- Transfer function again derived from Black’s formula

\[
\frac{\Phi_{out}}{\Phi_{vn}} = \frac{1}{1 + \frac{\alpha}{2\pi} I_{cp} H(f) K_v / (j f) (1/N)}
\]
A Simpler Parameterization for PLL Transfer Functions

- Define $G(f)$ as

$$G(f) = \frac{A(f)}{1 + A(f)}$$

- $A(f)$ is the open loop transfer function of the PLL

$$A(f) = \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)$$

Always has a gain of one at DC
Parameterize Noise Transfer Functions in Terms of $G(f)$

- **PFD-referred noise**

\[
\frac{\Phi_{out}}{\Phi_{vn}} = \frac{I_{cp}H(f)K_v/(j\,f)}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(j\,f)(1/N)}
\]

\[
= \frac{2\pi}{\alpha} \frac{\alpha/(2\pi)I_{cp}H(f)K_v/(j\,f)(1/N)}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(j\,f)(1/N)}
\]

\[
= \frac{2\pi}{\alpha} N \frac{A(f)}{1 + A(f)} = \frac{2\pi}{\alpha} NG(f)
\]

- **VCO-referred noise**

\[
\frac{\Phi_{out}}{\Phi_{vn}} = \frac{1}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(j\,f)(1/N)}
\]

\[
= \frac{1}{1 + A(f)} = 1 - \frac{A(f)}{1 + A(f)} = 1 - G(f)
\]
Parameterized PLL Noise Model

- **PFD-referred noise is lowpass filtered**
- **VCO-referred noise is highpass filtered**
- **Both filters have the same transition frequency values**
 - Defined as f_o

 Divider Control of Frequency Setting (assume noiseless for now)
Impact of PLL Parameters on Noise Scaling

- PFD-referred noise is scaled by square of divide value and inverse of PFD gain
 - High divide values lead to large multiplication of this noise
- VCO-referred noise is not scaled (only filtered)
Optimal Bandwidth Setting for Minimum Noise

- Optimal bandwidth is where scaled noise sources meet
 - Higher bandwidth will pass more PFD-referred noise
 - Lower bandwidth will pass more VCO-referred noise
Resulting Output Noise with Optimal Bandwidth

- **PFD-referred noise dominates at low frequencies**
 - Corresponds to close-in phase noise of synthesizer
- **VCO-referred noise dominates at high frequencies**
 - Corresponds to far-away phase noise of synthesizer
Summary of Noise Analysis of Integer-N Synthesizers

- Key PLL noise sources are
 - VCO noise
 - PFD-referred noise
 ▪ Charge pump noise, reference noise, etc.

- Setting of PLL bandwidth has strong impact on noise
 - High PLL bandwidth suppresses VCO noise
 - Low PLL bandwidth suppresses PFD-referred noise
Fractional-N Frequency Synthesis

Divide value is dithered between integer values

Fractional divide values can be realized!

Very high frequency resolution

Ref: Kingsford-Smith
US Patent 3,928,813
1974 (filing date)
Outline of Fractional-N Synthesizers

- Traditional Approach
- Sigma-Delta Concepts
- Synthesizer Noise Analysis
Use an accumulator to perform dithering operation
- Fractional input value fed into accumulator
- Carry out bit of accumulator fed into divider
Accumulator Operation

- Carry out bit is asserted when accumulator residue reaches or surpasses its full scale value
 - Accumulator residue increments by input fractional value each clock cycle
Fractional-N Synthesizer Signals with N = 4.25

- Divide value set at N = 4 most of the time
 - Resulting frequency offset causes phase error to accumulate
 - Reset phase error by “swallowing” a VCO cycle
 - Achieved by dividing by 5 every 4 reference cycles
The Issue of Spurious Tones

- PFD error is periodic
 - Note that actual PFD waveform is series of pulses – the sawtooth waveform represents pulse width values over time
- Periodic error signal creates spurious tones in synthesizer output
 - Ruins noise performance of synthesizer

\[N_{sd}[k] = N + \text{frac}[k] \]
The Phase Interpolation Technique

Phase error due to fractional technique is predicted by the instantaneous residue of the accumulator
- Cancel out phase error based on accumulator residue
The Problem With Phase Interpolation

- Gain matching between PFD error and scaled D/A output must be extremely precise
 - Any mismatch will lead to spurious tones at PLL output
Is There a Better Way?
Sigma-Delta dithers in a manner such that resulting quantization noise is “shaped” to high frequencies
Linearized Model of Sigma-Delta Modulator

- **Composed of two transfer functions relating input and noise to output**
 - **Signal transfer function (STF)**
 - Filters input (generally undesirable)
 - **Noise transfer function (NTF)**
 - Filters (i.e., shapes) noise that is assumed to be white
Example: Cutler Sigma-Delta Topology

- Output is quantized in a multi-level fashion
- Error signal, e[k], represents the quantization error
- Filtered version of quantization error is fed back to input
 - H(z) is typically a highpass filter whose first tap value is 1
 - i.e., \(H(z) = 1 + a_1 z^{-1} + a_2 z^{-2} \ldots \)
 - \(H(z) - 1 \) therefore has a first tap value of 0
 - Feedback needs to have delay to be realizable
Represent quantizer block as a summing junction in which \(r[k] \) represents quantization error

- Note:

\[
e[k] = y[k] - u[k] = (u[k] + r[k]) - u[k] = r[k]
\]

- It is assumed that \(r[k] \) has statistics similar to white noise
 - This is a key assumption for modeling – often not true!
Calculation of Signal and Noise Transfer Functions

Calculate using Z-transform of signals in linearized model

\[Y(z) = U(z) + R(z) \]
\[= X(z) + (H(z) - 1)E(z) + R(z) \]
\[= X(z) + (H(z) - 1)R(z) + R(z) \]
\[= X(z) + H(z)R(z) \]

- NTF: \(H_n(z) = H(z) \)
- STF: \(H_s(z) = 1 \)
A Common Choice for $H(z)$

$$H(z) = (1 - z^{-1})^m$$

$$\Rightarrow |H(e^{j2\pi fT})| = |(1 - e^{-j2\pi fT})^m|$$
Example: First Order Sigma-Delta Modulator

- Choose NTF to be

\[H_n(z) = H(z) = 1 - z^{-1} \]

- Plot of output in time and frequency domains with input of

\[x[k] = 0.5 + 0.25 \sin \left(\frac{2\pi}{100} k \right) \]
Example: Second Order Sigma-Delta Modulator

- Choose NTF to be

\[H_n(z) = H(z) = (1 - z^{-1})^2 \]

- Plot of output in time and frequency domains with input of

\[x[k] = 0.5 + 0.25 \sin\left(\frac{2\pi}{100}k\right) \]
Example: Third Order Sigma-Delta Modulator

- Choose NTF to be
 \[H_n(z) = H(z) = (1 - z^{-1})^3 \]

- Plot of output in time and frequency domains with input of
 \[x[k] = 0.5 + 0.25 \sin \left(\frac{2\pi}{100}k \right) \]
Observations

- Low order Sigma-Delta modulators do not appear to produce “shaped” noise very well
 - Reason: low order feedback does not properly “scramble” relationship between input and quantization noise
 - Quantization noise, r[k], fails to be white

- Higher order Sigma-Delta modulators provide much better noise shaping with fewer spurs
 - Reason: higher order feedback filter provides a much more complex interaction between input and quantization noise
Warning: Higher Order Modulators May Still Have Tones

- Quantization noise, $r[k]$, is best whitened when a “sufficiently exciting” input is applied to the modulator
 - Varying input and high order helps to “scramble” interaction between input and quantization noise
- Worst input for tone generation are DC signals that are rational with a low valued denominator
 - Examples (third order modulator with no dithering):
Fractional Spurs Can Be Theoretically Eliminated

See:

MASH topology

- Cascade first order sections
- Combine their outputs after they have passed through digital differentiators

- Advantage over single loop approach
 - Allows pipelining to be applied to implementation
 - High speed or low power applications benefit
Calculation of STF and NTF for MASH topology (Step 1)

- Individual output signals of each first order modulator

\[
y_1(z) = x(z) - (1 - z^{-1})r_1(z)
\]
\[
y_2(z) = r_1(z) - (1 - z^{-1})r_2(z)
\]
\[
y_3(z) = r_2(z) - (1 - z^{-1})r_3(z)
\]

- Addition of filtered outputs

\[
y[k] = x(z) - (1 - z^{-1})^3 r_3(z)
\]
Calculation of STF and NTF for MASH topology (Step 1)

- Overall modulator behavior

\[y(z) = x(z) - (1 - z^{-1})^3r_3(z) \]

- STF: \(H_s(z) = 1 \)
- NTF: \(H_n(z) = (1 - z^{-1})^3 \)
Use Sigma-Delta modulator rather than accumulator to perform dithering operation
- Achieves much better spurious performance than classical fractional-N approach

\[F_{\text{out}} = M \cdot F \cdot F_{\text{ref}} \]

Riley et. al., JSSC, May 1993
The Need for A Better PLL Model

- **Classical PLL model**
 - Predicts impact of PFD and VCO referred noise sources
 - Does not allow straightforward modeling of impact due to divide value variations
 - This is a problem when using fractional-N approach
Fractional-N PLL Model

- **Closed loop dynamics parameterized by**

\[
G(f) = \frac{A(f)}{1 + A(f)}
\]

where

\[
A(f) = \frac{\alpha I_{cp} H(f) K_V}{N_{nom} 2\pi j f}
\]
Parameterized PLL Noise Model

- Design revolves around choice of $\Sigma-\Delta$ and $G(f)$
 - We will focus on $G(f)$ design here
Order of $G(f)$ is set to equal to the Sigma-Delta order
- Sigma-Delta noise falls at -20 dB/dec above $G(f)$ bandwidth
- Bandwidth of $G(f)$ is set low enough such that synthesizer noise is dominated by intrinsic PFD and VCO noise
Impact of Increased PLL Bandwidth

- Allows more PFD noise to pass through
- Allows more Sigma-Delta noise to pass through
- Increases suppression of VCO noise

M.H. Perrott
Impact of Increased Sigma-Delta Order

- PFD and VCO noise unaffected
- Sigma-Delta noise no longer attenuated by $G(f)$ such that a -20 dB/dec slope is achieved above its bandwidth
Lowpass action of PLL dynamics suppresses the shaped Σ-Δ quantization noise
Impact of Increasing the PLL Bandwidth

- Higher PLL bandwidth leads to less quantization noise suppression

Tradeoff: Noise performance vs PLL bandwidth
A Cancellation Method for Reducing Quantization Noise

- **Key idea:** quantization noise can be predicted within the digital $\Sigma\Delta$ modulator structure
- **Issue:** cancellation is limited by analog matching
 - Achieves < 20 dB cancellation in practice

Pamarti et. al., TCAS II, Nov 2003
Combined PFD/DAC structure achieves inherent matching between error and cancellation signal
- > 29 dB quantization noise cancellation achieved
Gain of DAC is adjusted in an adaptive manner using LMS algorithm

- > 30 dB noise cancellation achieved
Summary of Fractional-N Frequency Synthesizers

- Fractional-N synthesizers allow very high resolution to be achieved with relatively high reference frequencies
 - Cost is introduction of quantization noise due to dithering of divider
- Classical fractional-N synthesizers used an accumulator for dithering
 - Quantization noise cancellation was attempted
- Sigma-Delta fractional-N synthesizers improve quantization noise by utilizing noise shaping techniques
 - Key tradeoff: PLL bandwidth versus phase noise
 - Quantization noise cancellation has made a comeback