
CppSim Reference Manual

Version 5.3

Michael H. Perrott

http://www.cppsim.com

Copyright c© 2002-2014 by Michael H. Perrott

All rights reserved

2

3

He had no beauty or majesty to

attract us to him,

nothing in his appearance

that we should desire

him.

But he was pierced for our

transgressions,

he was crushed for our

iniquities;

the punishment that brought us

peace was upon him,

and by his wounds we are

healed.

Isaiah 53:2,5

4

Contents

1 Foreword 9

2 Introduction 11

2.1 Comparison to Other Simulation Packages 11

2.2 Object Oriented Simulation Code . 14

2.3 The Issue of Ordering . 16

2.4 Outline of Book . 17

3 Setup and Use (Windows version) 19

3.1 Installation . 19

3.2 Running CppSim . 20

3.3 CppSimShared Directory Contents . 21

4 Overview 23

4.1 Schematic Views . 23

4.2 Netlist Format (netlist) . 25

4.3 Module Description File . 27

4.4 Simulation Description File (test.par) . 30

4.5 CppSim Commands . 30

4.6 Viewing Results . 31

5 Specifying Simulation Parameters (test.par) 33

5.1 Parsing Rules . 33

5.2 num sim steps: . 34

5.3 Ts: . 34

5.4 output: . 34

5.5 probe: . 37

5

6 CONTENTS

5.6 probe64: . 38

5.7 global nodes: . 38

5.8 global param: . 38

5.9 top param: . 39

5.10 alter: . 39

5.11 inp timing: . 40

5.12 inp dig: . 41

5.13 mex prototype: . 41

5.14 simulink prototype: . 45

5.15 library map for code: . 46

5.16 add top verilog libary file statements: . 46

5.17 add bottom verilog libary file statements: 47

5.18 add verilog test file statements: . 47

5.19 add verilog test module statements: . 48

5.20 allow non unit time for gtkwave: . 48

5.21 allow verilog output clashing: . 49

5.22 allow non bool signals in bus: . 49

5.23 electrical integration damping factor: . 49

5.24 temperature celsius for noise calc: . 50

6 Writing Code for Primitives 51

6.1 Parsing Rules . 51

6.2 module: . 52

6.3 description: . 53

6.4 label as usrp module: . 53

6.5 parameters: . 53

6.6 inputs: . 54

6.7 outputs: . 54

6.8 classes: . 54

6.9 static variables: . 55

6.10 set output vector lengths: . 55

6.11 init: . 56

6.12 end: . 56

6.13 code: . 57

6.14 electrical element: . 58

CONTENTS 7

6.15 functions: . 60

6.16 custom classes definition: and custom classes code: 61

6.17 sim order: . 62

6.18 stop current alter run . 63

6.19 timing sensitivity: . 64

7 General Purpose CppSim Classes 67

7.1 Vector and IntVector . 68

7.2 Matrix and IntMatrix . 75

7.3 List . 82

7.4 Clist . 85

7.5 Probe . 89

7.6 Probe64 . 91

7.7 Filter . 93

7.8 Amp . 97

7.9 EdgeDetect . 99

7.10 SdMbitMod . 101

7.11 Rand . 103

7.12 OneOverfPlusWhiteNoise . 105

7.13 Quantizer . 106

8 CppSim Classes for PLL/DLL Simulation 111

8.1 SigGen . 112

8.2 Vco . 115

8.3 Delay . 117

8.4 Divider . 118

8.5 Latch . 119

8.6 Reg . 121

8.7 Xor . 123

8.8 And . 125

8.9 Or . 127

8.10 EdgeMeasure . 129

A Example Simulation Code (Not Auto-Generated) 131

A.1 Classical Synthesizer . 132

8 CONTENTS

A.2 Σ-Δ Synthesizer . 135

A.3 Linear CDR . 137

A.4 Bang-bang CDR . 141

B Hspice Toolbox for Matlab 145

B.1 Setup . 145

B.2 List of Functions . 146

B.3 Examples . 147

Chapter 1

Foreword

As an IC designer, I often found myself frustrated by existing behavioral simulation tools, and

would typically go down the road of writing my own C or C++ code to examine architectural

issues. Now that I’ve entered the academic realm, I find myself wanting to pass on the ‘tricks

of the trade’ I have learned over the years, and thereby speed up the progress of my students.

Also, I have observed a general need for system simulation tools that are fast and flexible

and also integrated within current CAD tool frameworks for IC design.

The CppSim simulation package is my response to those needs. My hope is that it will

allow my students, and others, to quickly assess architectural ideas and then seamlessly move

on to circuit design within the same CAD framework, and to leverage each others system

designs through the existence of a common framework for behavioral simulation.

C++ was chosen as the simulator language due to its powerful features and fast execution

speed. It turns out that C++ is a fantastic language for representing high level systems

due to its support for object oriented descriptions. Indeed, systems can be described in a

hierarchical manner, object code can be executed in a multi-rate manner, and signals can

be stored in binary format compatible with other simulators.

A significant problem with C++ is that most circuit designers do not like to program,

and the learning curve for C++ is perceived as formidable. Also, complex system descrip-

tions quickly become unrecognizable in the form of text, and are much better specified in a

graphical manner to allow the designer to ‘see’ signal paths and topological structures such

as feedback loops.

The CppSim package makes two contributions to the behavioral simulation of systems.

First, it provides a netlist to C++ translator that allows the C++ simulation code to be au-

tomatically written based on a CppSim compatible netlist produced by a graphical schematic

9

10 CHAPTER 1. FOREWORD

capture program. In doing so, the designer can quickly piece together a system in a graphical

manner based on a library of system primitives with corresponding code descriptions, and

benefit from the power and speed of running compiled C++ code. Second, the CppSim

package provides a set of C++ classes that allow fast and convenient implementation of

system primitives. Common system blocks such as filters, VCO’s, nonlinear amplifiers, and

signal generators are easily realized using these classes, so that the creation of new system

primitives is typically fast and straightforward. Also, special blocks, which are based on

the area-conservation approach described in the paper referenced below, are included which

allow fast and accurate behavioral simulation of phase locked loop and delay locked loop

systems.

The CppSim package is free software that may be used for either academic or commercial

use. The source code for the C++ classes is provided, and binary files for implementing the

netlist to C++ translator are included for Windows and Linux machines. If you benefit from

the use of this package, it would be appreciated if you would tell others, and also include a

reference to the package in any papers you publish for which the software proved useful. For

general simulation of systems, an appropriate reference would be:

Perrott, M.H., “CppSim System Simulator Package,”

http://www.cppsim.com

If you apply the package to the simulation of phase locked loop or delay locked loop systems,

it would be appreciated if you would also include the reference:

Perrott, M.H., “Fast and Accurate Behavioral Simulation of

Fractional-N Frequency Synthesizers and other PLL/DLL Circuits,”

Design Automation Conference, June, 2002

Michael H. Perrott

Chapter 2

Introduction

This chapter introduces the CppSim package in a broad manner so that the reader can

develop a sense of how it fits in with other simulation packages, understand its overall

framework, and be aware of the assumptions it makes. We begin by comparing CppSim to

other simulation packages, discussing its object oriented framework and the issue of execution

order, and then providing a summary of the rest of the book.

2.1 Comparison to Other Simulation Packages

This section compares the SPICE, Simulink, and Verilog AMS simulation packages to the

CppSim package. This information will hopefully allow the user to understand the strengths

and weaknesses of CppSim, and to see how it fits in with other simulators used in the current

IC design flow.

SPICE

The SPICE simulation environment determines the solution to a set of simultaneous equa-

tions that are specified through a netlist describing the interaction between the system nodes.

This ‘fine-grain’ simulator is required when attempting to estimate the performance of ana-

log circuits implemented with transistors and passive elements. However, the solution of

simultaneous equations is a slow process, and the resulting simulation times are too long to

allow characterization of the behavior of medium to large systems.

11

12 CHAPTER 2. INTRODUCTION

Simulink

Many systems are designed in a block diagram manner in which there is little interaction

between elements contained in different blocks. In this case, there is no need to solve si-

multaneous equations for the entire system at once. Rather, the system can be viewed as

a set of expressions relating the outputs of each block to its inputs and internal state. By

performing block by block computations, the inputs to each block can be supplied by the

outputs of other blocks which feed into them, and the overall system response computed.

Simulink provides a graphical view of such systems, which allows users to place and wire

various blocks to create an overall system of their choice. Due to the lack of coupling between

blocks, and the significantly lower level of detail than encounterd with SPICE, computation

runs much faster than SPICE so that medium size systems can be explored.

Unfortunately, there are a number of disadvantages to the Simulink approach. First,

while there is a rich set of blocks already provided to the user, the process of creating new,

custom blocks is rather cumbersome and time consuming. As such, it is very typical for users

to avoid creation of new blocks, and go to great lengths to utilize blocks that are already

available. This operating mode can easily lead to compromised numerical performance,

slow speeds, and significant development time for achieving an accurately modeled system.

Second, although Simulink simulations run faster than SPICE for a given system, they are

still quite slow compared to custom C/C++ programs (in fact, uncompiled, they are well

over an order of magnitude slower than their custom C/C++ counterparts). Third, the

Matlab/Simulink language is rather limited compared to C++, so that advanced users can

feel stifled in terms of their ability to efficiently describe the functional behavior of their

system blocks. Finally, the graphical framework of Simulink is disjoint from other CAD

tools used in integrated circuit (IC) design, which creates a significant disconnect between

architectural exploration and circuit design investigation.

Verilog AMS

Verilog AMS is one of the most promising simulation environments to appear on the IC

CAD scene for some time. This simulator combines SPICE and Verilog simulators into

a common simulator core, and therefore allows analog blocks to be described in terms of

coupling relationships between nodes, and digital blocks to be described in terms of Verilog

code. Therefore, analog and digital circuits can be co-simulated, and the overall behavior,

and possibly even performance, of the system can be investigated.

2.1. COMPARISON TO OTHER SIMULATION PACKAGES 13

Unfortunately, Verilog AMS currently has some deficiencies when trying to investigate

systems at an architectural level. Specifically, it lacks a set of fast, high level macromodels to

describe analog blocks at a behavioral level. The approach of using SPICE representations

to represent such blocks has two major drawbacks — the resulting simulation times are too

long, and the level of detail that needs to be supplied by the user is too great. While Verilog-

A modeling can somewhat mitigate this issue, it presents a very limited language compared

to more advanced languages such as C++.

To allow access to high level modeling of blocks within the Verilog AMS environment,

the VppSim framework was created. The key idea of VppSim is to leverage the Verilog PLI,

which is common to Verilog simulators as well as to AMS (since it includes Verilog), to easily

incorporate C++ modeling into either Verilog or AMS flows. While VppSim would seem to

be the successor to CppSim, it should be seen more as a convenient extension of Verilog and

AMS.

CppSim

The C++ language offers the flexibility of computing system behavior in any manner desired

— it can based on the solution of simultaneous equations as assumed in SPICE or on the

solution of input/state/output relationships as assumed in Simulink. It is indeed a powerful

language, and allows you to quickly perform low level computation while also offering high

level structural constructs such as classes. The ability to represent systems in an object

oriented manner allows an elegant framework for their simulation. These facts make C++

the language of choice for designers that want the maximum freedom in developing simulation

code for an investigated system.

Unfortunately, C++ has drawbacks in that it requires a large amount of effort to develop

simulation code, and that the resulting text description of the system is much less intuitive

than a graphical representation. The CppSim package removes these issues by supplying

classes that allow easy representation of system building blocks such as filters, amplifiers,

VCO’s, etc., and by supplying a netlist to C++ conversion utility that enables automatic

code generation from a graphical description using a mainstream schematic editor pack-

age. The resulting environment provides both beginners and advanced users a powerful tool

for simulating large systems, and also enables the tool to be completely integrated within

mainstream IC CAD tools that support CppSim compatible netlisting.

The simulation approach taken with CppSim is to represent blocks in the system based

on input/state/output relationships as done with Simulink. The blocks are internally coded

14 CHAPTER 2. INTRODUCTION

in an object oriented manner, and the simulation code calculates the overall system behavior

by computing the output of each block one at a time for each sample point in the simulation.

This approach carries the advantage of allowing straightforward description of blocks, fast

computation, and the ability to easily support multi-rate operation of different blocks in the

system. Compared with Similink, CppSim offers very fast simulation performance, the ability

to represent large systems at a significant level of detail while still achieving reasonable run

times, the ability to simulate billions of time steps without memory issues, and the ability

to work in mainstream CAD tools rather than being confined to a proprietory system.

Starting with version 4 of CppSim, block descriptions can correspond to either CppSim

or Verilog code. In the case of Verilog, a free tool called Verilator, which was written

by Wilson Snyder (wsnyder@wsnyder.org), is used to automatically turn the Verilog code

into a corresponding C++ class. CppSim leverages this Verilator-produced C++ class to

seamlessly model the Verilog behavior of the block as if it were a standard CppSim module.

As such, CppSim therefore allows a simple and fast approach to model mixed signal systems

in which both analog and digital signal processing is utilized.

2.2 Object Oriented Simulation Code

The underlying philosophy of the CppSim simulator is to represent the various blocks in a

system as objects that update their outputs one sample at a time based on inputs that are

specified one sample at a time. The influence of the inputs on the outputs of each block are

determined by their specified behavior, which is set at the beginning of a simulation run.

The block behavior can be a function of state information as well as the block inputs — the

state information is preserved inside its respective block so that the overall simulator need

not keep track of it.

An example is in order to illustrate the important concepts of the object oriented ap-

proach. Figure 2.1 displays an example system to be simulated which consists of 5 blocks

that are connected in a feedback system. The pseudo-code for simulating this system in the

CppSim framework is listed below:

///////// Declaration Statements /////////

ClassA a(behavior settings);

ClassB b(behavior settings);

· · · other declarations · · ·
////////// Main Simulation Loop //////////

2.2. OBJECT ORIENTED SIMULATION CODE 15

loop through each time sample

{
a.inp(); // compute next ‘a’ output value

if (condition statement)

e.inp(); // computation in ‘e’ block at lower rate

b.inp(a.out+d.out); // ‘b’ input = ‘a’ output + ‘d’ output

c.inp(b.out);

d.inp(c.out,e.out); // multiple inputs supported for ‘d’ block

/////// Save Signals to File ///////

probe.inp(c.out,”c”);

}

A

E

B C

D

Figure 2.1 Example system.

In the above code, we see that the simulation consists of the following structure:

1. Declaration statements

• Set behavior of objects

2. Main simulation loop

• Compute object outputs one sample at a time

• Save selected signals to a file

As stated above, the behavior of objects is specified in the declaration section — examples of

declaration statements for various classes are given in Chapters 7 and 8. A main simulation

loop executes the ‘inp’ routine for all simulation blocks according to the order they are placed

within the loop. The ‘inp’ routine updates the current outputs of the object based on inputs

entering the routine. If there are no inputs, the output value is updated solely on its current

state and declared behavior. As revealed in the above code, blocks can be placed within

conditional statements so that their output value is updated only when the statement is

16 CHAPTER 2. INTRODUCTION

true. By doing so, blocks can be executed in multi-rate fashion according to, for instance,

clock signals generated by other blocks in the system. The outputs of each block, as well as

important state variables, can be easily accessed for each block by using the notation

block name.signal

The code above illustrates this point for the output signals of various blocks. Finally, signals

associated with different blocks are saved to a file using the ‘probe’ function.

2.3 The Issue of Ordering

The execution order of the various blocks in a system has an impact on the effective delay

seen between the blocks. This point is illustrated in Figure 2.2, which shows the impact of

choosing different order arrangements. In case (1), the chosen order arrangement leads to zero

delay between all blocks except between the output of D and the other blocks. The reason

for this delay is that D is the last block in the simulation loop, and its value does not impact

the other blocks until the next simulation time step. Note that the delay value corresponds

to one time step of the simulator, and has negligible impact on most analog feedback systems

since the simulator sample rate is typically much higher than the bandwidth of the feedback

system. For digital circuit networks, much care must be taken to insure that simulation

induced delays do not compromise the true behavior of the system. Cases (2) through (4)

display alternate ordering arrangements, and illustrate the corresponding delays between

blocks that they induce.

When directly creating C++ code with the CppSim classes, as shown in Appendix A,

the order of execution is directly controlled by the user by the relative placement of each

block in the code. When creating C++ code from a netlist, the CppSim package attempts

to order the blocks to achieve the minimal number of induced delays through the efforts

of an auto-ordering algorithm. When there are no feedback loops embedded within other

feedback loops, the algorithm generally does a good job. However, when multiple-embedded

feedback loops are present, the user may want to bypass the auto-ordering algorithm and

directly specify the desired order by using the ’sim order’ command described in Chapter 6.

It is important to understand that CppSim orders blocks on a cell-by-cell basis. In other

words, when it encounters a given cell in the system hierarchy, it executes all the blocks in

that cell before moving back to a higher level of hierarchy. Once you encapsulate blocks

into a given cell, the ordering of those blocks will remain consistent with respect to each

other regardless of the higher level portion of the system. Therefore, it is a good strategy to

2.4. OUTLINE OF BOOK 17

A

E

B C

DDelay

Delay

A
B
C
D
E

Execution Order

A

E

B C

D

Delay

Delay

A
E
C
B
D

Execution Order

A

E

B C

DDelay

A
E
B
C
D

Execution Order

A

E

B C

DDelay

Delay

E
B
C
D
A

Execution Order

Best Execution Order

Impact of Alternate Ordering Arrangements

(1)

(2)

(3)

(4)

Figure 2.2 The impact of execution order.

encapsulate blocks that are order-sensitive with respect to each other into the same cell so

that their order remains constant regardless of changes you make to the rest of the system.

2.4 Outline of Book

An outline of the rest of this book is as follows. Chapter 3 covers basic setup issues involved in

the installation of CppSim on your computer. Chapter 4 provides an overview of the CppSim

framework in going from schematic description to viewing the results of the simulation.

Chapter 5 provides detail with respect to the setting of simulator parameters (such as the

number of time steps and simulator sample period), and Chapter 6 provides detail with

respect to representing blocks in the schematic with corresponding C++ code. Chapters 7

and 8 provide documentation of the CppSim classes. Finally, Appendix A provides C++

code examples using the CppSim classes, and Appendix B provides documentation for the

18 CHAPTER 2. INTRODUCTION

Hspice Toolbox for Matlab, which is useful for viewing and postprocessing simulation results.

Chapter 3

Setup and Use (Windows version)

This chapter outlines basic instructions for installing and running CppSim.

3.1 Installation

It is assumed that you are currently in possession of a file called setup_cppsim4.exe available

at

http://www.cppsim.com

This self-extracting file supports operation in Windows 7/Vista/XP/2000, and includes Sue2,

CppSim, Verilator, and the MinGW and MSYS packages which provide g++, make, sh, and

other routines. Other installations of CppSim support use of Cadence for design entry, as

discussed at the above website.

Install the CppSim package by running

setup_cppsim4.exe

in Windows (i.e., simply double-click on it in Windows Explorer). You may place the main

CppSim directory at any desired location that does not include spaces in its name, though it

is advised that you place it at a convenient place for editing files that are contained within it.

The self-extracting file will not only extract all the required files (which will all be contained

with the CppSim main directory), but will also automatically add the appropriate directories

to your Windows Path variable to allow seamless execution of CppSim. Note that a Windows

environment variable called CppSimHome will also be created during the installation. In order

for Windows to recognize the updated Path and CppSimHome variables, you should restart

your machine after completing the installation.

19

20 CHAPTER 3. SETUP AND USE (WINDOWS VERSION)

3.2 Running CppSim

Once you have completed installation, start Matlab (or restart Matlab if it is already open)

and then add the .../CppSimShared/HspiceToolbox path to the Matlab path. This oper-

ation is performed by typing

addpath(’c:/CppSim/CppSimShared/HspiceToolbox’)

at the Matlab prompt, where c:/CppSim should be replaced by the actual path you chose

for CppSim during the installation. Note that you must repeat the above operation each

time you start Matlab, or you may also include the above statement in a startup.m file that

Matlab automatically executes during startup.

As an example of running CppSim, go to the simulation directory for the cell sd_synth_fast

by typing

cd c:/CppSim/SimRuns/Synthesizer_Examples/sd_synth_fast

within Matlab. Again, you must substitute the proper path that you chose for CppSim in

place of c:/CppSim. If you type ls at the Matlab prompt, you will find three files: test.par,

comp_psd.m, and netlist.

Once you are in that directory, simply type

cppsim

at the Matlab prompt. CppSim should run and generate a bunch of warning messages (just

ignore them in this case). Once the run has completed, load the signals into Matlab by

typing

x = loadsig(’test.tr0’);

You can then view which signals have been probed by typing

lssig(x);

Finally, plot the signals sd_in and vin by typing

plotsig(x,’sd_in;vin’);

See the Hspice Toolbox manual for more commands related to viewing and post-processing.

3.3. CPPSIMSHARED DIRECTORY CONTENTS 21

3.3 CppSimShared Directory Contents

The CppSimShared directory should contain the following directories:

• CommonCode

– Contains the CppSim classes, an example local classes and functions.h and .cpp

file, and several other files that are used for Verilator and GTKWave support in

CppSim.

• CadenceLib

– Contains the CppSim and Verilog module code for CppSim simulations.

• Doc

– Contains this document, the Sue2 manual, and an expanded DAC paper describ-

ing techniques to achieve fast and accurate PLL simulations. These techniques

are implemented in the CppSim classes provided for PLL/DLL simulations.

• HspiceToolbox

– Contains the Hspice Toolbox for Matlab, which allows a convenient and powerful

waveform viewer and postprocessor for simulated signals from the Hspice and

CppSim simulators.

• MatlabCode

– Contains Matlab code useful for plotting the simulated phase noise of the syn-

thesizer examples and the simulated phase error of the clock and data recovery

examples.

• SimRuns

– Contains the test.par files and netlists for two example systems, sd synth and

sd synth fast, contained in the Sue2 library CppExamples.

• bin

– Contains the Windows binary file net2code.exe, which performs netlist to C++

conversion.

22 CHAPTER 3. SETUP AND USE (WINDOWS VERSION)

• Sue2

– Contains the Sue2 schematic editor package, which is used as a free alternative

to the Cadence schematic editor assumed when running VppSim.

• MinGW

– The Minimalist Gnu package available at http://www.mingw.org, which provides

the GNU g++ compiler.

• msys

– The Minimal SYStem package available at http://www.mingw.org, which pro-

vides make, sh, and other useful commands.

• Verilator

– Contains the Verilator package by Wilson Snyder, which can also be downloaded

at http://www.veripool.org/wiki/verilator

• GTKWave (only included in Windows distribution)

– Contains the GTKWave viewer available at http://gtkwave.sourceforge.net

Chapter 4

Overview

This section provides an overview of the steps involved in running simulations within the

CppSim framework. The intention is to provide the reader with a feeling of the issues

involved — more detailed explanations will be covered in the following chapters. As such,

we will look at an example simulation system that is provided with the CppSim package,

namely the sd synth cell included in Sue2 library CppExamples. We will examine schematic

views associated with this cell, the corresponding netlist and modules.par file, the main

simulator description file test.par used to set the key simulator parameters, a description

of the UNIX commands required to perform the simulation, and a brief overview of how to

view the results.

4.1 Schematic Views

An example schematic that was drawn in the Sue2 schematic capture program, which cor-

responds to the sd synth cell, is shown in Figure 4.1. The circuit corresponds to a Σ-Δ

fractional-N frequency synthesizer, and consists of a phase/frequency detector (PFD), charge

pump, lead/lag loop filter, voltage controlled oscillator (VCO), divider, and a Σ-Δ modulator

that dithers the instantaneous divide value. In addition, a reference frequency is generated

using a VCO module with a lower frequency, and a step input is fed into the Σ-Δ modulator

to observe the settling dynamics of the overall synthesizer.

A key observation in the above schematic is that symbols can have associated parameters

that specify aspects of their behavior. For instance, the lead/lag filter has parameters fp,

fz, and A that specify its associated pole, zero, and gain values. In the case of the lead/lag

filter, its parameters are “hard-wired” to fixed values. However, parameters values can

23

24 CHAPTER 4. OVERVIEW

Figure 4.1 Sue2 schematic of Σ-Δ frequency synthesizer.

also be specified in terms of expressions that include higher level parameters (see the next

paragraph) or global variables. For instance, the step in symbol in Figure 4.1 contains

expressions involving global parameters. Here we have added the suffix ‘ gl’ to alert us to

the fact that the parameter is global, but this notation is not necessary.

The CppSim simulator allows schematics to be hierarchical in nature, so that symbols

at any level can be represented by schematics consisting of other symbols. As an example,

in Figure 4.1, the PFD symbol has an associated schematic that is shown in Figure 4.2. In

turn, the nand2 symbol within the PFD schematic also has an associated schematic, which

is not shown here for the sake of brevity. It is important to note that parameters can be

passed between levels of hierarchy, so that symbols contained in the schematic view of a

higher level symbol can inherit parameters values from the higher level symbol.

At the lowest level in the schematic hierarchy, symbols must correspond to C++ code

that implements the function associated with the symbol. These symbols are referred to as

primitives, and have an associated schematic that typically does not contain other symbols.

Such a schematic will often look like the one shown in Figure 4.3, which corresponds to

an XOR gate that has inputs a and b, and an output y. However, the schematic view of

primitives can also contain other instances, transistors, resistors, etc. — it simply ignores

everything within it when code is specified for it in the ‘modules.par’ file. Therefore, the

module definitions within the ‘modules.par’ file control the level of hierarchy that is de-

scended to in any cell. For instance, if you desired to go deeper into the hierarchy of a

cell that you already defined code for in ‘modules.par’, simply comment out the module

4.2. NETLIST FORMAT (NETLIST) 25

Figure 4.2 Sue2 schematic of XOR-based phase/frequency detector.

definition in ‘modules.par’ and add in new definitions for the instances within the cell. Note

that in all cases, whether code for a module is defined or not, all non-instance elements

contained in the netlist, such as transistors, capacitors, and resistors, are completely ignored

by CppSim.

Figure 4.3 Sue2 schematic of XOR gate primitive.

4.2 Netlist Format (netlist)

The CppSim program operates on a custom format netlist, which is typically produced from

a schematic capture program, to produce the corresponding C++ simulation code. This

netlist must follow the format of the example shown below:

***** CppSim Netlist for Cell ’sd_synth’ *****

************** Module sd synth **************

module: sd synth Synthesizer Examples

path: C:/CppSim/CppSimShared/SueLib/Synthesizer Examples/sd synth.sue

module terminal: out

26 CHAPTER 4. OVERVIEW

module terminal: noiseout

module terminal: trig sig

module terminal: noiseout filt

instance: xi0 constant CppSimModules 10

instance terminal: out n2

instance parameter: consval 0

instance: xi1 vco CppSimModules

instance terminal: vctrl n2

instance terminal: squareout ref

instance terminal: sineout n5

instance parameter: freq 20e6

instance parameter: kvco 1

instance: xi12 xorpfd CppSimModules

instance terminal: ref ref 20

instance terminal: div div

instance terminal: out pfdout

instance: xi2 ch pump CppSimModules

instance terminal: in pfdout

instance terminal: out n0

instance parameter: ival 1.5e−6

instance: xi3 leadlagfilter CppSimModules

instance terminal: in n1

instance terminal: out vin

instance parameter: fp 127.2e3 30

instance parameter: fz 11.8e3

instance parameter: gain 1/(30e−12)

****** Other blocks not included for brevity ******

************** Module xorpfd **************

module: xorpfd CppSimModules

path: C:/CppSim/CppSimShared/SueLib/CppSimModules/xorpfd.sue

module terminal: ref

module terminal: div 40

module terminal: out

instance: xi0 dff2 CppSimModules

instance terminal: d n0

instance terminal: clk ref

instance terminal: q n5

instance terminal: qb n0

instance: xi1 dffreset CppSimModules

4.3. MODULE DESCRIPTION FILE 27

instance terminal: d xor out

instance terminal: clk ref

instance terminal: q n7 50

instance terminal: qb n2

instance terminal: r n8

****** Other blocks not included for brevity ******

4.3 Module Description File

All primitive symbols in the netlist must be associated with corresponding C++ code that

describes their function. The code definitions for all of the primitives are contained within

separate files located in the CadenceLib directory of the CppSim distribution. An example

of CppSim module descriptions is listed below:

module: gain

description: gain element

parameters: double gain

inputs: double a

outputs: double y

classes:

static variables:

init:

code:

y=a∗gain; 10

module: constant

description: constant for input to other blocks

parameters: double consval

inputs:

outputs: double out

static variables:

classes:

init:

code: 20

out = consval;

module: noise

description: Gaussian noise source

parameters: double var

inputs:

28 CHAPTER 4. OVERVIEW

outputs: double out

static variables:

classes: Rand randg("gauss")

init: 30

code:

out = sqrt(var/Ts)∗randg.inp();

module: step in

description: step input

parameters: double vend double vstart double tstep

inputs:

outputs: double step

classes:

static variables: double i 40

init: i=0.0;

code:

step = i∗Ts > tstep ? vend : vstart;

i++;

module: vco

description: voltage controlled oscillator

parameters: double freq double kvco

inputs: double vctrl

outputs: double squareout double sineout 50

static variables:

classes: Vco vco("fc + Kv*x","fc,Kv,Ts",freq,kvco,Ts);

init:

code:

vco.inp(vctrl);

squareout = vco.out;

sineout = sin(vco.phase);

module: leadlagfilter

description: lead/lag filter 60

parameters: double fz, double fp, double gain

inputs: double in

outputs: double out

static variables:

classes: Filter filt("1+1/(2*pi*fz)s","C3*s + C3/(2*pi*fp)*s^2","C3,fz,fp,Ts",1/gain,fz,fp,Ts);

init:

code:

4.3. MODULE DESCRIPTION FILE 29

filt.inp(in);

out = filt.out;

70

module: sd modulator

description: Sigma−Delta modulator with multi−bit output

parameters: int order

inputs: double in double clk

outputs: double out

classes: SdMbitMod sd mod("1 - z^-1"), EdgeDetect clkedge()

static variables:

init:

if (order == 1)

sd mod.set("1 - z^-1"); 80

else if (order == 2)

sd mod.set("1 -2z^-1 + z^-2");

else

sd mod.set("1 -3z^-1 + 3z^-2 - z^-3");

out = 2.0;

code:

if (clkedge.inp(clk))

{
sd mod.inp(in);

out = sd mod.out; 90

}
As seen in the above file, each CppSim module is described by a list of items that

includes its inputs, outputs, and parameters along with a specification of their respective

types (i.e., int, double, etc.). The input, output, and parameter names must match those in

the corresponding module definition in the netlist (i.e., module ‘gain’ must have nodes a and

y in its module definition along with parameter gain in either the module definition or the

corresponding instance calls). It should be noted that the netlist is converted to lowercase

text, so that the input, output, and parameter names must all be lowercase in any module

definition in the module.par file.

Each module definition must also specify all classes that are used for its code implemen-

tation, along with initialization and main code descriptions. Initialization code is run only

once at the beginning of a simulation, while the main code is run each time step of the

simulation. Note that any variables declared in the main code section will lose their value

each time the time step is incremented in the simulation. If variables are required which

must retain their values between time steps, they should be declared as static variables using

30 CHAPTER 4. OVERVIEW

the ‘static variables:’ command.

Please see Chapter 6 for more information on writing module description files, which

includes issues related to syntax and information on the various commands that are available.

4.4 Simulation Description File (test.par)

The overall systems parameters, such as number of time steps and the simulation step size

are specified in a simulation description file that we will refer to as ‘test.par’. An example

test.par file is given below:

num sim steps: 2e6

Ts: 1/10e9

∗∗ save most signals every time step

output: signals

probe: out ref vin pfdout sd in xi12.xor out

∗∗ save sd modulator output only on rising edges of divider output

output: sd out trigger=div

probe: div val

10

global param: in gl=92.31793713 delta gl=4 step time gl=.7e6∗Ts
global nodes: vdd=1.0 gnd=−1.0

∗ top param: x=in gl+2.0

∗ alter: delta gl=1:0.25:4

∗ inp timing: 1e−9 .5e−9 1/2e9 0 1

∗ inp dig: node1 [1 0 1 (0 3) (1 4) 0]

∗ inp dig: node2 [1 0 0 (1 3) (0 5) 1]

Please see Chapter 5 for more information on writing simulation description files, which

includes issues related to syntax and information on the various commands that are available.

4.5 CppSim Commands

The recommended method of running CppSim is from its GUI interface in Sue2 (or Cadence).

Alternatively, it can be run from Matlab or a command prompt in a manner such that

minimal effort is required of the user to run simulations. See the Setup section (Chapter 3)

for details. Note that, upon completion of the simulation, you can view the results using

CppSimView, GTKWave, or Matlab (using the Hspice Toolbox included with this package).

4.6. VIEWING RESULTS 31

4.6 Viewing Results

The output of the CppSim simulation run is in Hspice-compatible binary format by default,

and is stored for this example in the files ‘signals.tr0’ and ‘sd out.tr0’ as directed by the ‘out-

put:’ commands in the above ‘test.par’ file. To view signals, one can either use CppSimView

or the Hspice Toolbox for Matlab that is included with the CppSim package. Documentation

for the Hspice Toolbox is included as an appendix at the end of this document. Note that the

output can also be specified as an LXT file which GTKWave can read. See the description

for the ‘output:’ command in the following section for more information on this option.

Using the Hspice Toolbox, the signals sd in and vin were plotted and are illustrated in

Figure 4.4.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−4

92

93

94

95

96

97

sd
_i

n

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−4

−1

0

1

2

3

4

vi
n

TIME

Figure 4.4 Synthesizer response to a step input — top plot: input to sd modulator, bottom
plot: closed loop response of VCO input voltage.

32 CHAPTER 4. OVERVIEW

Chapter 5

Specifying Simulation Parameters

(test.par)

This chapter discusses the various commands available for use in the simulation description

file, which we refer to as the ‘test.par’ file. We begin by covering general parsing issues,

including the notation for commenting out lines, and will then discuss the various commands

in detail.

5.1 Parsing Rules

The CppSim environment is designed to be very forgiving with respect to parsing rules so

that one does not need to remember adding commas or semicolons at the right place. In

general, spaces are used to separate commands from their arguments, as well as arguments

from each other, and commas and semicolons are ignored. As an example, the statement

global param: a gl=3.3 b gl=-5 c gl=.7e6*Ts

can also be written as

global param: a gl = 3.3 b gl = -5 c gl = .7e6*Ts

or as

global param: a gl=3.3, b gl=-5, c gl=.7e6*Ts;

or as

global param:

a gl=3.3

b gl=-5

c gl=.7e6*Ts

33

34 CHAPTER 5. SPECIFYING SIMULATION PARAMETERS (TEST.PAR)

As a rule of thumb, one should never separate an expression into multiple lines. As an

example, you should NOT write

global param: a gl=

3.3

‘//’ characters can be used to comment out lines provided that they are the first characters

encountered on a line. As an example

// global param: a gl=3.3 b gl=-5 c gl=.7e6*Ts

///// global param: a gl=3.3 b gl=-5 c gl=.7e6*Ts

are valid ways of commenting out a line.

Descriptions of the individual commands used in a ‘test.par’ file are presented below:

5.2 num sim steps:

The number of simulation steps is specified with this statement. An example of the syntax

of this command is:

num sim steps: 2e6

5.3 Ts:

The value of the simulation period, Ts, is specified with this statement. Note that Ts

becomes a global variable in the C++ simulation code, and is often used in module parameter

statements as well as module code. An example of the syntax of this command is:

Ts: 1/10e9

5.4 output:

The name of the Hspice-compatible binary output file for signals specified in the following

‘probe:’ or ‘probe64:’ statement. Nominally, the specified signals are stored every time step

of the simulator. Optional parameters allow one to store the signal values only on the rising

or falling edges of a trigger signal, when an enable signal is above zero, or when the time

sample or time value is greater than or equal to a given value. You can also save to a format

that supports CppSimView and the Hspice Toolbox for Matlab (which are convenient for

analog signal viewing and processing), or to a format that supports GTKWave (which is

convenient for viewing digital signals). A summary of the available options is

5.4. OUTPUT: 35

• Save for GTKWave (i.e., lxt file format)

filetype=gtkwave

• View double interp signals as boolean values (i.e., 0 or 1)

view double interp=bool

• Save only on positive edges of signal ’trig sig’

trigger=trig sig

• Save only on negative edges of signal ’trig sig’

trigger=-trig sig

• Save only when ’enable sig’ is greater than 0

enable=enable sig

• Save when ’enable sig’ is less than or equal to 0

enable=-enable sig

• Save when simulation step is within a simulation time step range

start sample=sample num to begin end sample=sample num to end

• Save when simulation step is within a simulation time range

start time=sample time to begin end time=sample time to end

• Save only when bool or double interp signals transition

dig transitions=max time between samples

Example: save signals every time step in the binary file ‘signals.tr0’ which can be viewed

with CppSimView or the Hspice Toolbox for Matlab

output: signals

probe: a b y xi12.net12

Example: save signals every time step in the binary file ‘signals 0.lxt’ which can be viewed

with GTKWave

36 CHAPTER 5. SPECIFYING SIMULATION PARAMETERS (TEST.PAR)

output: signals filetype=gtkwave

probe: a b y xi12.net12

Example: save signals only when the signal ‘xi1.clk’ has a rising edge in the CppSimView

file ‘signals2.tr0’

output: signals2 trigger=xi1.clk

probe: a2 b2 xi3.xi1.sd out

Example: save signals only when the signal ‘clk’ has a falling edge in the GTKWave file

‘signals3.tr0’, and view double interp signals as bool values (i.e., either 0 or 1 rather than -1

to 1)

output: signals3 filetype=gtkwave view double interp=bool trigger=-xi1.clk

probe: a2 b2 xi3.xi1.sd out

Example: save signals only when the signal ‘clk’ is greater than zero in the binary file

‘signals3.tr0’

output: signals3 enable=xi1.clk

probe: a2 b2 xi3.xi1.sd out

Example: save signals only when the signal ‘clk’ is less than or equal to zero in the binary

file ‘signals3.tr0’

output: signals3 enable=-xi1.clk

probe: a2 b2 xi3.xi1.sd out

Example: save signals only when bool or doube interp signals within the probe list transition,

with a maximum time between samples of 1 microsecond

output: signals2 dig transitions=1/1e6

probe: a2 b2 xi3.xi1.sd out

Example: save signals only when the simulation time step is greater than or equal to 1000

output: signals3 start sample=1000

probe: a2 b2 xi3.xi1.sd out

Example: save signals only when the simulation time value is greater than or equal to 1e-6

output: signals3 start time=1e-6

probe: a2 b2 xi3.xi1.sd out

Example: save signals only when the simulation time step is less than or equal to 3000

output: signals3 end sample=3000

probe: a2 b2 xi3.xi1.sd out

5.5. PROBE: 37

Example: save signals only when the simulation time value is less than or equal to 3e-6

output: signals3 end time=3e-6

probe: a2 b2 xi3.xi1.sd out

Example: save to multiple files

output: signals

probe: a b y xi12.net12

output: signals2 trigger=xi1.clk enable=sig1

probe: a2 b2 xi3.xi1.sd out

output: signals3 trigger=-xi1.clk start time=1e-6 end time=3e-6

probe: a2 b2 xi3.xi1.sd out

output: signals3 filetype=gtkwave view double interp=bool trigger=xi1.clk

probe: a2 b2 xi3.* xi3.xi1.*

Note that in all cases, the trigger signal must be a square wave that alternates between

either -1 and 1, 0 and 1, or 0 and -1 (see the description of the EdgeDetect class).

5.5 probe:

The signals specified with this statement are saved in a binary file according to the infor-

mation specified by the last ‘output:’ command encountered before this statement. Signals

contained in the top level of the schematic are specified by their name, and signals at lower

levels of hierarchy are specified by their name and by the chain of instances that lead to the

cell view that the signal is contained in. An example of the syntax of this command is:

probe: vin pfdout sd in div val xi12.xor out xi12.xi7.y

where xi12.xor out corresponds to signal xor out contained within instance xi12 in the top

level of hierarchy, and xi12.xi7.y corresponds to signal y contained within instance xi7 that

is within instance xi12. Note that the number of levels of hierarchy within the system can

be as large as the user desires.

Wild card characters can also be used in specifying probe node names. For instance, to

record all signals in the top view of the system as well as all signals within instance xi1, you

would specify

probe: * xi1.*

Note that if you specify just an instance name (such as xi2), then all of the input and output

signals of that instance will be probed

38 CHAPTER 5. SPECIFYING SIMULATION PARAMETERS (TEST.PAR)

probe: * xi1.* xi2

For Verilog modules only (which are automatically converted to C++ by Verilator), you can

specify multiple levels of probing. For instance, to look at all of the signals within the first

2 levels of hierarchy within Verilog instance xi3, you would specify

probe: * xi1.* xi2 xi3.*.*

5.6 probe64:

The same as ‘probe:’, except that values are stored as 64-bit values rather than 32-bit values.

Files created with ‘probe64:’ are roughly twice as large as those created with ‘probe:’, but

provide double-precision rather than single-precision accuracy for signals.

An example of the syntax of this command is:

probe64: vin pfdout sd in div val xi12.xor out xi12.xi7.y

Note that this option is not valid when saving to GTKWave file format (i.e., lxt files).

5.7 global nodes:

A global node is assumed to have a constant signal value across all levels of hierarchy. The

signal value of such nodes are specified with this statement. For example, nodes that are

named vdd and gnd can be specified to have signal levels 1.0 and -1.0, respectively, using

the statement:

global nodes: vdd=1.0 gnd=-1.0

In practice, it is inappropriate for global nodes to correspond to the output node of any

instance — they should always correspond to input nodes. No checking is done to insure

this is the case.

5.8 global param:

Global parameters are defined at all levels of hierarchy in the system. These parameters can

be used within parameter expressions, and can also be used within module code (although

that is not generally recommended). It is suggested that the user label these parameters in

a manner that reflects the fact that they are global, such as by adding the suffix ‘ gl’ to their

names. Note that the variable Ts is automatically supplied as a global parameter, and its

value is set according to the ‘Ts:’ statement described above. An example of the syntax of

this command is:

5.9. TOP PARAM: 39

global param: a gl=3.3 b gl=-5 c gl=.7e6*Ts

5.9 top param:

Top level parameters are defined only in the top level of the system hierarchy. Therefore,

this command would be used instead of the ‘global param:’ command if one wanted to

constrain the scope of a parameter to the top level as opposed to having it pervade all levels

of hierarchy. These parameters cannot be altered using the ‘alter:’ command described

below, but can be defined in terms of global parameters which can be altered. An example

of the syntax of this command is:

top param: yval=1/4e9 xval=a gl+2.0

5.10 alter:

You can alter global parameters several ways using the ‘alter:’ statement, which will now be

explained through a series of examples. In all of the examples, the ‘alter:’ statement(s) are

assumed to be placed after the ‘global param:’ statement that defines the global parameters

being altered.

Example: do simulations over all combinations of a gl = 15,18 and b gl = 1e3,2e3

alter: a gl = 15 18

alter: b gl = 1e3 2e3

Example: do simulations where a gl and b gl are altered together,

i.e., a gl,b gl = 15,1e3 and a gl,b gl = 18,2e3

alter: a gl = 15 18 b gl = 1e3 2e3

Example: do combinations where a gl and b gl are altered together in combination with

values of c gl = 1,2,3,4,5

alter: a gl = 15 18 b gl = 1e3 2e3

alter: c gl = 1 2 3 4 5

Example: an easier way to do the above is to use Matlab notation:

alter: a gl = 15 18 b gl = 1e3 2e3

alter: c gl = 1:5

Example: suppose you want to increment c gl by 0.1 instead of 1

40 CHAPTER 5. SPECIFYING SIMULATION PARAMETERS (TEST.PAR)

alter: c gl = 1:0.1:5

Example: combine Matlab notation with individual specifications

alter: c gl = 1e3 5e3:1e3:10e3 20e3 50e3 100e3:100e3:1e6 2e6

The resulting output of performing such ‘alter:’ operations is to produce a separate

output file for each global parameter combination. As an example, if

output: signals

is specified in the test.par file, then a a series of files

signals.tr0 signals.tr1 signals.tr2 . . .

will be produced. If you have multiple ‘output:’ statements, then a series of files will be

produced for each of those output files.

To see how the global variable combinations match up to their corresponding transient

runs in this case, you can load test globals.tr0 in Matlab. Note that the prefix ’test’ was

determined by the name of the simulation description file, ’test.par’. If you instead, as an

example, named this file ’test2.par’, you would load test2 globals.tr0. Each altered global

variable will be a signal in that file whose value for each simulation run is specified.

5.11 inp timing:

Input signals into the simulated system should generally be created within the graphical

environment of the schematic capture program. However, there are cases where it is easier

to specify signals directly in the test.par file. Specifically, digital signals are easier to specify

in an ASCII editor as a vector sequence than by going through the graphical environment.

In the future, other types of signals may also be supported.

The ‘inp timing:’ command is used to specify the timing parameters associated with

input signals that follow it. The parameters of this command are as follows:

inp timing: delay rise/fall time period vlow vhigh

In the above statement, ‘delay’ corresponds to the initial delay of the waveform, ‘rise/fall time’

corresponds to its rise and fall times, ‘period’ is its period in seconds, and ‘vlow’ and

‘vhigh’ are its minimum and maximum signal values. Currently, digital inputs ignore the

rise/fall time parameter, but all of the parameters must still be specified. An example of

the syntax of this command is:

inp timing: 1e-9 .5e-9 1/2e9 0 1

Note that the inp timing command can NOT span over multiple lines.

5.12. INP DIG: 41

5.12 inp dig:

Digital inputs are specified in vector form by the ‘inp dig:’ command, and take on the timing

and signal value specifications of the last ‘inp timing:’ statement encountered. Each input

alternates between ‘vlow’ (corresponding to bit value 0) and ’vhigh’ (corresponding to bit

value 1). Transition values between these two levels will take on values between ‘vlow’ and

‘vhigh’ depending on the location of the edge within the simulator time sample period —

these signals therefore conform to the area-conserving transition technique discussed in the

paper included in the CppSim package. The signals will also repeat if an ’R’ character is

specified at the end of the sequence. Note that the inp dig command can NOT span over

multiple lines. The command is best explained through a few examples.

Example: create a digital clock signal that drives node1

inp dig: node1 [1 0 R]

The input into node1 therefore consists of a square wave signal that alternates between ’vlow’

and ’vhigh’ according to the area-conserving transition technique. Note that if you remove

the ’R’ character in the above expression, the signal will not repeat.

Example: create a digital signal with the pattern (vlow,vhigh,vhigh,vhigh,vlow,vlow,vhigh)

that is continually repeated

inp dig: node2 [0 1 1 1 0 0 1 R]

Example: another way of specifying the above sequence is

inp dig: node2 [0 (1 3) (0 2) 1 R]

Example: create two clock signals at different frequencies along with accompanying signals

inp timing: 0 0 1/1e9 0 1

inp dig: clk slow [1 0 R]

inp dig: data slow [1 0 1 1 0 R]

inp timing: 0 0 1/2e9 0 1

inp dig: clk fast [1 0 R]

inp dig: data fast [0 1 1 1 0 0 1 R]

5.13 mex prototype:

CppSim nominally runs as a standalone executable, and interaction with Matlab occurs

through file transfer using ‘probe:’ statements in CppSim and ‘loadsig cppsim’ statements

42 CHAPTER 5. SPECIFYING SIMULATION PARAMETERS (TEST.PAR)

in Matlab. However, there are times when it is more convenient to work directly with a

CppSim object in Matlab. The ‘mex prototype:’ command allows automatic generation of

a Matlab mex file corresponding to a given CppSim system which can then be compiled and

run directly in Matlab.

An example of the syntax of this command is:

mex prototype: [vin,xi12.xor out] = sd synth fast(in,in2,param1,num sim steps,Ts);

In the above example, signals vin and xi12.xor_out correspond to signals which have been

placed within ‘probe:’ statements elsewhere in the simulation file. These signals will be

output by the above Matlab mex call upon its completion — all conditions imposed by the

associated ‘probe:’ statements for each signal will be observed (such as triggering or enabling

by other signals, start and stop times, etc.) so that the vector lengths of each of these signals

may differ from each other.

The name of the mex function, which in the above case is ‘sd synth fast’, must be the

same as the associated CppSim top level cell.

The input signals in and in2 can have different lengths in the above case since num_sim_steps

is specified, but must have the same length if num_sim_steps is not present in the prototype

definition. Both global and top cell parameters, such as param1 in the above example, can

be specified. The specification of num_sim_steps and Ts are optional. If num_sim_steps is

not specified, then the number of simulation steps per mex call will be set by the length of

the input signals. If num_sim_steps is not specified and no input signals are present, then

the number of simulation steps per mex call will be the same as specified in the simulation

file (i.e., test.par). If Ts is not specified, then the simulation step size will also be as specifed

in the simulation file.

Repeated calls to the CppSim mex function will cause the simulation to continue from

its last stopping point. To reset the simulation to its starting point, you must specify ‘end’

within the mex call. For the above example, you would run

sd synth fast(‘end’);

within Matlab. Resetting the simulation allows parameters (including num_sim_steps and

Ts) to be updated. In contrast, input signals can be changed for each mex call regardless of

whether the simulation has been reset.

Setting Up the Mex Compiler in Matlab (under Windows)

To set up the mex compiler in Matlab, run the command

mex -setup

5.13. MEX PROTOTYPE: 43

In Windows, you need to specify a C++ compiler rather than the C compiler that comes

with Matlab. Thus far, only the Microsoft C++ compiler has been verified to work — a free

version of this compiler is available at

http://msdn.microsoft.com/vstudio/express/visualc/

After downloading this package, you’ll need to add a few missing library files to the directory

c:/Program Files/Microsoft Visual Studio 8/VC/lib

which, for convenience, have been placed within the CppSim package (Windows version) in

the directory

c:/CppSim/CommonCode/msft_SDK

Setting Up the Mex Compiler in Matlab (Cadence Version in Linux)

To set up the mex compiler in Matlab, run the command

mex -setup

Choose the Template Options file for buiding gcc MEX-files (i.e., gccopts.sh).

Generating and Compiling the Mex Function in Matlab

To generate the mex code, you simply need to include the ‘mex prototype:’ statement

within the simulation file (i.e., test.par) and then run cppsim. To do this in Matlab, begin by

changing the working directory to that of the desired SimRun cellview and then run cppsim

within Matlab. To access the cppsim script in Matlab, recall that you need to first add the

HspiceToolbox path to Matlab using the Matlab command:

addpath c:/cppsim/HspiceToolbox

As an example, in Matlab you might type

cd c:/CppSim/SimRuns/Synthesizer_Examples/sd_synth_fast

and then run cppsim within Matlab in that directory.

To compile the mex function after completion of the CppSim run, you would then run

the Matlab command

compile_sd_synth_fast

where you should replace the above with compile_cellname for a cellname other than

sd_synth_fast. Upon completion of the above, you can then run the mex function in

Matlab as specified by the prototype format.

Additional Examples

Here are additional examples of the syntax of the ‘mex prototype:’ command:

44 CHAPTER 5. SPECIFYING SIMULATION PARAMETERS (TEST.PAR)

mex prototype: [vin] = sd synth fast();

In the above case, num_sim_steps and Ts are set according to the simulation file (i.e.,

test.par).

mex prototype: [vin] = sd synth fast(in,in2);

In the above case, Ts is set according to the simulation file (i.e., test.par), and num_sim_steps

is set equal to the lengths of input signals in and in2 (which must have matching lengths).

mex prototype: [vin] = sd synth fast(in,in2,num sim steps);

In the above case, Ts is set according to the simulation file (i.e., test.par), num_sim_steps is

set according to the above input value, and in and in2 can be input signals of any length. As

an example, consider the case where num_sim_steps was set to 1000, the length of in to 10,

and the length of in2 to 20. In this case, each mex call with such settings will progressively

simulate the system 1000 steps at a time, where the first 10 steps will progress through the

first 10 input values of in and in2, the next 10 steps will retain the last value of in while

it progresses through the next 10 values of in2, and the remaining steps will retain the last

values of in and in2. Therefore, by declaring num_sim_steps as one of the input arguments

to the mex function, one can avoid long input vector lengths for the case where input signals

are constant.

Vector Input and Output Signals

Sometimes it is desirable to have input or output signals of type Vector or IntVector

for the CppSim mex function in Matlab. In such case, it is important to realize that input

and outputs are treated quite differently when they are CppSim vector signals. In the

case of input vector signals, they must have constant length for the entire duration of a

given simulation run (i.e., until the user calls the ‘end’ command discussed above), and are

assumed to be constant for the duration of each mex call. The length of such input vectors

do not influence the value of num_sim_steps as inputs with non-vector types can. In the

case of output vector signals, they will also be restricted to have constant length for the

entire duration of a simulation run (i..e, until the user calls the ‘end’ command), but are not

assumed to be constant for the duration of each mex call. In Matlab, these vector outputs

will be converted to matrices whose rows correspond to the vector array values at given time

instances, and whose columns correspond to different time instances.

As an example, suppose that signal in is a Vector signal of length 8, while signal in2

is a double signal of length 100. Suppose also that out1 corresponds to a Vector signal of

length 10, whereas out2 corresponds to a double signal. Assume that we specify the mex

function prototype as:

5.14. SIMULINK PROTOTYPE: 45

mex prototype: [out1,out2] = sd synth fast(in,in2);

When the above mex function is called in Matlab, the value of num_sim_steps is set to be

100 (corresponding to the length of the non-vector signal in2). The value of in is assumed

to be an 8-element vector that is constant for the duration of the 100 time steps of each

mex call, whereas the value of in2 will vary at each time step according to its Matlab array

values. Output signal out1 will consist of a matrix with 10 rows and 100 columns, while

output signal out2 will consist of a vector with 1 row and 100 columns.

5.14 simulink prototype:

Similar to the ‘mex prototype:’ command, the ‘simulink prototype:’ command allows more

direct operation of CppSim code within the Matlab environment. The ‘simulink prototype:’

command allows automatic generation of a Simulink S-Function file corresponding to a given

CppSim system which can then be compiled and run directly in Simulink.

An example of the syntax of this command is:

simulink prototype: [vin,sd in] = sd synth fast(in,in2[3],in3[par2],par1,par2,Ts);

In the above example, signals vin and sd_in correspond to signals which have been placed

within ‘probe:’ statements elsewhere in the simulation file. These signals will correspond

to outputs in the resulting Simulink block. Unlike the ‘mex prototype:’ command, the

conditions imposed by the associated ‘probe:’ statements for each signal (such as triggering

or enabling by other signals, start and stop times, etc.) will be ignored. Also, unlike the

‘mex prototype:’ command, the parameter ‘Ts’ (which corresponds to the time step of the

CppSim code) must always be included as one of the Simulink parameters.

The name of the Simulink function call, which in the above case is ‘sd synth fast’, must

be the same as the associated CppSim top level cell. The final S-Function name will have

a ’ s’ appended to it (i.e., ‘sd synth fast s’ in the above example) so that there is no clash

between Simulink and mex files created for the same cell.

The input signals in and in2[3] correspond to scalar and vector signals, respectively.

All input vectors must have their lengths explicitly specified (i.e., in2[3] is a vector of

length 3). The length can be specified as a parameter, as shown in the above example where

in3[par2] is a vector of length par2. Any vectors which correspond to output signals from

the block will have their lenths automatically set by the CppSim code, so that that the user

cannot specify their length in the ‘simulink prototype:’ statement.

46 CHAPTER 5. SPECIFYING SIMULATION PARAMETERS (TEST.PAR)

To better understand the ‘simulink prototype:’ statement, please refer to the CppSim

Primer document. Also, please note that you must have a C++ compiler installed on your

system, as described in the ‘mex prototype:’ section of this document.

5.15 library map for code:

This command is used to remap the base directory location of CppSim/Verilog code files for

modules within the specified libraries. It is assumed that the newly mapped base directory

contains the same sub-directory and file structure as the library it corresponds to, which is:

Library Base Dir/Module Dir/View Dir/Code File

In the above, note that the base directory Library Base Dir contains multiple sub-directories

whose names, Module Dir, correspond to the various modules in the library. For each Mod-

ule Dir directory, multiple sub-directories, View Dir, can exist corresponding to each code

view that is provided for the given module. Example names for the View Dir directo-

ries include cppsim and verilog. In the case of a cppsim View Dir directory, a CppSim

code file named text.txt should be placed in this directory. In the case of a verilog

View Dir directory, a Verilog code file such as verilog.v should be placed in this direc-

tory. One can see many examples of such library directory structures by looking in the

CppSimShared/CadenceLib directory contained within the CppSim package.

An example of the syntax of this command is:

library map for code:

Library1 = /home/username/CppSimMappedCodeLibs/Library1 Code Base Dir

Library2 = /home/username/CppSimMappedCodeLibs/Library2 Code Base Dir

Note that the typical reason for applying such mapping is to allow creation of CppSim or

Verilog code for modules within libraries that are not amenable to changes (i.e., are write

protected such that the user cannot modify their contents). Examples include standard

cell libraries or foundry device libraries that are shared throughout a company such that

individuals are not permitted to make custom modifications.

5.16 add top verilog libary file statements:

This command is used to place verilog library file statements in the top portion of the

test_lib.v file that is generated with the net2code -vpp command. You can use this

5.17. ADD BOTTOM VERILOG LIBARY FILE STATEMENTS: 47

command to add standard cell library code when running VppSim simulations. Note that

this command is ignored when running CppSim simulations (i.e., net2code -cpp).

An example of the syntax of this command is:

add top verilog library file statements:

‘timescale 1ns/1ps

module example verilog module (a,b,y);

input a,b;

output y;

(· · · verilog module code · · ·)
endmodule

module example verilog module2 (x,y);

(· · · verilog module code · · ·)
endmodule

5.17 add bottom verilog libary file statements:

This command is essentially the same as the add_top_verilog_library_file_statements:

command except that the included statements are placed at the bottom of the test_lib.v

file rather than the top. Placement of the included statements at the bottom of the

test_lib.v file prevents included definition statements such as timescale from impact-

ing the auto-generated code by the net2code -vpp command.

5.18 add verilog test file statements:

This command is used to place verilog test file statements within the test.v file that is

generated with the net2code -vpp command. You can use this command to add ‘define,

‘include, and any other appropriate verilog statements within your VppSim testbench but

outside of the top testbench module. In contrast, you should use the add_verilog_test_module_statement

command to include statements within the verilog testbench module. Note that this com-

mand is ignored when running CppSim simulations (i.e., net2code -cpp).

An example of the syntax of this command is:

add verilog test file statements:

‘define CONV RATE 2’b10

‘include “/home/user/constants.v”

48 CHAPTER 5. SPECIFYING SIMULATION PARAMETERS (TEST.PAR)

5.19 add verilog test module statements:

This command is used to place verilog test file statements within the top testbench module

in test.v file that is generated with the net2code -vpp command. You can use this com-

mand to add registers, wires, PLI calls, and any other appropriate verilog statements to the

VppSim testbench module. In contrast, you should use the

add_verilog_test_file_statements: command to include statements outside of the ver-

ilog testbench module but inside the test.v file. Note that this command is ignored when

running CppSim simulations (i.e., net2code -cpp).

An example of the syntax of this command is:

add verilog test module statements:

reg power on;

initial

begin

power on = 0;

#10

power on = 1;

#10

power on = 0;

#100

$example pli call(“example parameter”);

end

5.20 allow non unit time for gtkwave:

This command is used to allow CppSim to run with Ts set to a non-unit-time value when

signals are probed for GTKwave. For instance, for the case where

Ts: 40e-9

probing for GTKwave will normally lead to Ts being changed to 10e-9, thereby slowing the

CppSim simulation time. However, when setting

allow non unit time for gtkwave: yes

5.21. ALLOW VERILOG OUTPUT CLASHING: 49

the value of Ts will remain at 40e-9. In this case, however, the time axis of GTKwave will

be incorrect since it will assume that the time step is the next highest unit-time value (i.e.,

100e-9 in this case).

5.21 allow verilog output clashing:

This command is used to allow CppSim to run despite having output nodes of Verilog

modules connected together. In general, it is suggested that this option only be used in

special circumstances since it can easily lead to systems whose blocks are incorrectly wired.

An example of the syntax of this command is:

allow verilog output clashing: yes

5.22 allow non bool signals in bus:

This command is used to prevent CppSim from automatically converting signals which form a

bus (i.e., sig[5:0]) at the schematic level to bool signal values. Setting this option is primarily

useful to keep the timing information of double interp signals which are grouped together in

a bus at the schematic level.

An example of the syntax of this command is:

allow non bool signals in bus: yes

5.23 electrical integration damping factor:

This command alters the manner in which numerical integration is performed with the

two extremes being backward Euler integration (the default) and trapezoidal integration.

Backward Euler, which corresponds to a damping factor of 1.0, is chosen as the default since

it is well behaved for signals that contain fast transitions. For cases where signals do not

exhibit fast transitions, and especially for highly resonant networks, trapezoidal integration,

which corresponds to a damping factor of 0.0, is the better choice.

Some examples of using this command are:

electrical integration damping factor: 0.0

electrical integration damping factor: 1.0

electrical integration damping factor: 0.5

50 CHAPTER 5. SPECIFYING SIMULATION PARAMETERS (TEST.PAR)

Note that schematic-based modules that are instantianted within a given system can

individually choose their electrical integration damping factor by including it as a parameter

in their icon view. An example of this approach is given in the cell test electrical rc filters

within library Electrical Examples.

5.24 temperature celsius for noise calc:

This command selects the temperature at which noise calculations are carried out for elec-

trical elements which include noise (i.e., resistors and electrical switches). The default value

is 25 degrees Celsius.

Some examples of using this command are:

temperature celsius for noise calc: -40.0

temperature celsius for noise calc: 125.0

Chapter 6

Writing Code for Primitives

This chapter discusses the various commands available for use in the module code description

files, which are located in the CadenceLib directory. We begin by covering general parsing

issues, including the notation for commenting out lines, and will then discuss the various

commands in detail.

6.1 Parsing Rules

As in the case of the ‘test.par’ file, the CppSim environment is designed to be very forgiving

with respect to parsing rules for module code definitions so that one does not need to

remember adding commas or semicolons at the right place. In general, spaces are used to

separate commands from their arguments, as well as arguments from each other, and commas

and semicolons are ignored. As an example, the statement

inputs: double a double b

can also be written as

inputs: double a, double b;

or as

inputs:

double a

double b

As a rule of thumb, one should never separate a specific description into multiple lines. As

an example, you should NOT write

51

52 CHAPTER 6. WRITING CODE FOR PRIMITIVES

inputs: double

a

‘//’ characters can be used to comment out lines provided that they are the first characters

encountered on a line.

Example: comment out specific lines in a module description:

module: xor2

description: two-input xor gate

// parameters: double w

inputs: double a, double b

outputs: double y

classes: Xor xor1()

// init:

y = -1.0;

code:

xor1.inp(a,b);

y = xor1.out;

Example: comment out entire module description:

// module: xor2

description: two-input xor gate

parameters: double w

inputs: double a, double b

outputs: double y

classes: Xor xor1()

init:

y = -1.0;

code:

xor1.inp(a,b);

y = xor1.out;

Descriptions of the individual commands used to describe module code are presented

below:

6.2 module:

The name of the module specified here must match the associated module it represents in

the netlist. An example of the syntax of this command is:

6.3. DESCRIPTION: 53

module: and2

6.3 description:

A text description of the module function. This is ignored by CppSim, but is useful for

sharing the code with others. An example of the syntax of this command is:

description:

implements a two input ‘and’ function whose signals conform

to the area conservation protocol for representing transitions

6.4 label as usrp module:

CppSim has been set up to work with the USRP board designed by Matt Ettus (http://www.ettus.com).

There are some extra files that must be compiled in when USRP modules are included within

a CppSim system, and the ’label as usrp module:’ command allows auto-sensing of the need

for such extra compile steps. An example of the syntax of this command is:

label as usrp module: yes

label as usrp module: no

6.5 parameters:

The type and name of all parameters associated with the module are specified with this

command. The parameter names must match those in the associated module in the netlist

— since CppSim converts the netlist text to lowercase, lowercase parameter names must be

specified here. An example of the syntax of this command is:

parameters: double gain double fc int order

One should note that expressions for parameter values given in the netlist will be con-

verted to lowercase, so that it is good practice to define lowercase variables in the test.par

file. A related issue is that the global variable ’Ts’ has an uppercase letter — if you desire

to use it in expressions for parameter values within the netlist, then you should define a

lowercase version in the test.par file using

global param: ts=Ts

54 CHAPTER 6. WRITING CODE FOR PRIMITIVES

6.6 inputs:

The type and name of all inputs associated with the module are specified with this command.

The input names must match those in the associated module in the netlist description of the

module. An example of the syntax of this command is:

inputs: double a double b int c

6.7 outputs:

The type and name of all outputs associated with the module are specified with this com-

mand. The output names must match those in the associated module in the netlist de-

scription of the module. be specified here. An example of the syntax of this command is:

outputs: double y double yb int yd

6.8 classes:

The declaration statement of all classes used in the module code must be placed here. Any

number of classes can be specified, and parameters specified in the ‘parameters:’ statement

can be passed to class declaration expressions. A few examples are in order.

Example: declare two classes for use in the module code

classes: Reg reg1() Xor xor1()

or

classes:

Reg reg1()

Xor xor1()

Example: declare a class using parameters ‘freq’ and ‘kvco’ that have been specified with

the ‘parameters:’ command, and the global parameter ‘Ts’

classes: Vco vco(”fc + Kv*x”,”fc,Kv,Ts”,freq,kvco,Ts)

Note that a few words are in order with regards to syntax. First, all class objects must

have an associated set of parenthesis, as seen above with the class objects reg1() and xor1().

Second, class declarations cannot be broken up between lines, i.e., do NOT write:

classes: Vco vco(”fc + Kv*x”,”fc,Kv,Ts”,freq,

kvco,Ts)

6.9. STATIC VARIABLES: 55

6.9 static variables:

Since CppSim enters and exits the module code during each simulation time sample, variables

that are declared in the ‘code:’ section will go in and out of scope during each time sample,

and therefore will not retain their values from one simulation time step to the next. In the

case that you want to have a variable that retains its value from one simulation time step

to the next, you can declare it as a static variable using the ‘static variables:’ command. In

addition, static variables can be probed using the ‘probe:’ statement in the test.par file, and

therefore offer a means of probing signals embedded in the module code. An example of the

syntax of this command is:

static variables: double var1 int SigNum char Name[10]

Note that static variable names can freely use uppercase letters.

6.10 set output vector lengths:

The ‘set output vector lengths:’ command allows you to initialize the length of vectors that

are declared as output signals for the module. It is important to note that the length

of output vector signals cannot be changed except within the ‘set output vectors lengths:’

section — this is done so that vector lengths do not change during a given simulation alter

run, which would cause many headaches otherwise. (Note that vectors lengths can change

from alter run to alter run, just not within a given alter run). The output vector lengths

specified within the ‘set output vectors lengths:’ are valid before the ‘init:’ section is run,

which allows the length of input vector signals to be checked by code written in the ‘init:’

section.

To gain a better understanding of how to use this command, here is an example of setting

the output vector ’out vec’ to have length 8, and output vector ’out vec2’ to have length 12:

set output vector lengths:

out vec=8

out vec2=12

56 CHAPTER 6. WRITING CODE FOR PRIMITIVES

6.11 init:

The ‘init:’ command allows you to run initialization code that is executed only once at the

beginning of a simulation run (note that if you use the ‘alter:’ statement in the test.par file,

the initialization code will be run once for each global parameter combination). Therefore,

you can use this command to initialize variables and also to redefine class behavior based

on module parameters specified with the ‘parameters:’ command. For instance, the code

below redefines the noise shaping transfer function of a Σ-Δ modulator object based on the

module parameter ‘order’, and initializes the variable ‘out’ to the value of 2:

init:

if (order == 1)

sd mod.set(”1 - ẑ-1”);

else if (order == 2)

sd mod.set(”1 -2ẑ-1 + ẑ-2”);

else

sd mod.set(”1 -3ẑ-1 + 3ẑ-2 - ẑ-3”);

out = 2.0;

You can see the full module definition corresponding to the above ’init:’ command in Chapter

4, section 3.

An important issue in writing code in the ‘init:’ section is that it is not parsed by CppSim,

but rather is passed straight to the C++ simulation code. Therefore, the syntax of the code

must conform to the C++ language — if it does not, the C++ compiler will generate error

messages.

6.12 end:

The ‘end:’ command allows you to run terminating code that is executed only once at the

end of a simulation run (note that if you use the ‘alter:’ statement in the test.par file, the

terminating code will be run once for each global parameter combination). An example of

using the end: statement is found in the ascii store module within modules.par — there it

saves the contents of a list to a file at the end of a given simulation run.

An important issue in writing code in the ‘end:’ section is that it is not parsed by CppSim,

but rather is passed straight to the C++ simulation code. Therefore, the syntax of the code

6.13. CODE: 57

must conform to the C++ language — if it does not, the C++ compiler will generate error

messages.

6.13 code:

The ‘code:’ section contains the C++ code that implements the desired function of the

module. This code is run every time the simulator time step is incremented, and can include

variable declarations, functions, class objects, and all the standard C++ directives such as

for loops and if-else condition statements. One thing to be aware of is that if the user wants

to use their own user defined classes or functions, the class/function declarations must be

placed in the my classes and functions.h file and the class/function code must be placed in

the my classes and functions.cpp file, both of which must be located in the same directory as

cppsim classes.h and cppsim classes.cpp. The need for user defined classes/functions should

be minimal given the flexibility of the CppSim classes. Another issue is that variables

declared in the ‘code:’ section will lose their value from time step to time step, so that the

‘static variables:’ command should be used in some cases as discussed above. Finally, you

should be aware of the fact that the code specified in the ‘code:’ section is not parsed by

CppSim, but rather is passed straight to the C++ simulation code. Therefore, the syntax

of the code must conform to the C++ language — if it does not, the C++ compiler will

generate error messages.

Some examples are in order — each of the ones to follow are taken from the modules.par

file that is shown in Chapter 4, section 3.

Example: implement a ‘gain’ module by setting its output, ‘y’, equal to its input, ‘a’, times

a gain parameter ‘gain’:

code:

y=a*gain;

Example: implement a ‘noise’ module using a class object ‘randg’ (which implements a Gaus-

sian random sequence with variance one) whose output is scaled by the variance parameter

‘var’ and global variable ‘Ts’:

code:

out = sqrt(var/Ts)*randg.inp();

The reader is invited to look at more examples of ‘code:’ sections listed in Chapter 4, Section

3, as well as the various module descriptions contained in the CppSim package.

58 CHAPTER 6. WRITING CODE FOR PRIMITIVES

6.14 electrical element:

Provides an alternative to the ’code:’ command in describing the behavior of a module. In

particular, this command allows the module to correspond to an electrical element composed

of linear circuit components and/or switches. In turn, the values of the nodes for this

element are computed using nodal analysis. By allowing such electrical elements, CppSim

can simulate passive and active circuit networks, switched capacitor filters, and discrete-time

and continuous-time analog-to-digital converters.

Figure 6.1 shows the available electrical elements that may be used in CppSim. One

should note that they are all linear elements except for an ideal diode, electrical diode, and

switch, electrical switch, which are parameterized in terms of on and off resistance.

capacitor inductorresistor

1:n

electrical_transformer mutual_inductors

m

l1 l2

vcvsvccs cccs ccvs ccvs_single_out

electrical_diode electrical_switch dc_voltage dc_current

2

in
2in

en

dc_current_with_noisedc_voltage_with_noise dc_voltage_with_noise_sq dc_current_with_noise_sq

en

Figure 6.1 Electrical elements available in CppSim.

The electrical primitives shown in Figure 6.1 are specified in the ‘electrical element:’

section of a CppSim module as follows:

• resistor t1 t2 resistance=resistance expr noise enable=noise enable expr

• capacitor t1 t2 capacitance=capacitance expr

• inductor t1 t2 inductance=inductor expr

6.14. ELECTRICAL ELEMENT: 59

• electrical transformer in ref in out ref out n=n expr

• mutual inductors t2 ref t2 t1 ref t1 inductance1=inductance1 expr inductance2=inductance2 expr

mutual inductance=mutual inductance expr

• vccs out ref out in ref in gain=gain expr

• cccs out ref out in ref in gain=gain expr

• vcvs out ref out in ref in gain=gain expr

• ccvs out ref out in ref in gain=gain expr

• ccvs single out out in ref in gain=gain expr

• electrical diode t1 t2 on resistance=on resistance expr off resistance=off resistance expr

• electrical switch t1 t2 sw on on resistance=on resistance expr off resistance=off resistance expr

noise enable=noise enable expr

• dc voltage v plus v minus dc voltage=dc voltage expr

• dc current plus minus dc current=dc current expr

• dc voltage with noise v plus v minus dc voltage=dc voltage expr noise enable=noise enable expr

spectral density=spectral density expr flicker corner frequency=flicker corner frequency expr

flicker slope=flicker slope expr

• dc voltage with noise sq v plus v minus dc voltage=dc voltage expr noise enable=noise enable expr

spectral density sq=spectral density sq expr flicker corner frequency=flicker corner frequency expr

flicker slope=flicker slope expr

• dc current with noise plus minus dc current=dc current expr noise enable=noise enable expr

spectral density=spectral density expr flicker corner frequency=flicker corner frequency expr

flicker slope=flicker slope expr

• dc current with noise sq plus minus dc current=dc current expr noise enable=noise enable expr

spectral density sq=spectral density sq expr flicker corner frequency=flicker corner frequency expr

flicker slope=flicker slope expr

60 CHAPTER 6. WRITING CODE FOR PRIMITIVES

Note that for the last four primitives, the parameter spectral density corresponds to

a single-sided spectral density with units of V/
√
Hz or A/

√
Hz for dc voltage with noise

or dc current with noise, respectively. In contrast, the parameter spectral density sq corre-

sponds to a single-sided spectral density with units of V 2/Hz orA2/Hz for dc voltage with noise sq

or dc current with noise sq, respectively. Also, flicker corner frequency has units of Hertz,

and flicker slope has units of dB/decade and must have a value in the range of -5 to -15

(dB/decade).

As an example consider the following electrical element which corresponds to a resistor

with distributed parasitic capacitance:

module: resistor with cap

description:

parameters: double resistance, double noise enable, double par cap

inputs: double t1, double t2, double b

outputs:

classes:

static variables:

init:

code:

electrical element:

resistor t1 n0 resistance=resistance/2 noise enable=noise enable

resistor t2 n0 resistance=resistance/2 noise enable=noise enable

capacitor t1 b capacitance=par cap/4

capacitor n0 b capacitance=par cap/2

capacitor t2 b capacitance=par cap/4

Note that when CppSim runs, it will treat the above as an RC network inserted flat into

the corresponding schematic where the instance is placed.

6.15 functions:

The ‘functions:’ section allows you to specify functions local to the module being de-

fined. By doing so, the module becomes self-contained and easy to pass on to others (the

user otherwise needs to add such functions to my classes and functions.cpp/h in the Cpp-

Sim/CommonCode directory). To use the function within several different modules, you’ll

6.16. CUSTOM CLASSES DEFINITION: AND CUSTOM CLASSES CODE: 61

need to copy the function into the functions: section of each module (unless you put it into

my classes and functions.cpp/h).

As an example, let us assume that you wanted to use two functions within the module

called ‘add(a,b)’ and ‘mul(a,b)’. Such functions would be specified as:

functions:

double add(double a, double b)

{
double out;

out = a + b;

return(out);

}
double mul(double a, double b)

{
double out;

out = a*b;

return(out);

}

6.16 custom classes definition: and custom classes code:

The ‘custom classes definition:’ and ‘custom classes code:’ sections allow you to specify

classes local to the module being defined. By doing so, the module becomes self-contained

and easy to pass on to others (the user otherwise needs to add such classes to the files

‘my classes and functions.cpp/h’ in the CppSim/CommonCode directory). To use the classes

within several different modules, you’ll need to copy the class definitions and code into the

custom classes definition: and custom classes code: sections of each module (unless you put

it into my classes and functions.cpp/h).

As an example, let us assume that you wanted to define a class called ‘And6 example’:

custom classes definition:

class And6 example

{
public:

And6 example();

62 CHAPTER 6. WRITING CODE FOR PRIMITIVES

∼And6 example();

double inp(double in0, double in1, double in2, double in3, double in4, double in5);

double out;

private:

And and5,and2;

};

custom classes code:

And6 example::And6 example()

{
out = -1.0;

}

And6 example::∼And6 example()

{
}

double And6 example::inp(double in0, double in1, double in2, double in3, double in4, double in5)

{
out = and2.inp(and5.inp(in0,in1,in2,in3,in4),in5);

return(out);

}

6.17 sim order:

As discussed in the Introduction chapter, CppSim executes each instance contained in a non-

primitive module (i.e. a module whose functionality is defined by the netlist rather than

by corresponding code in the modules.par file) one at a time until all have been executed,

updates the simulator time step, and then repeats the instance by instance execution. The

instance order in this execution sequence is nominally set by an algorithm internal to the

CppSim simulator. Generally, if the system does not contain feedback loops embedded within

other feedback loops, the algorithm does the right thing. However, if you do have a feedback

6.18. STOP CURRENT ALTER RUN 63

loop embedded within another feedback loop, you may want to bypass the algorithm and

directly specify the order of instance execution.

The ‘sim order:’ command allows you to specify the order of execution of the instances

in a non-primitive module. As an example, consider ordering the instances contained in the

‘xorpfd’ module specified in the netlist file in Chapter 4, Section 2. The module definition

within the modules.par file that would accomplish this task is given as:

module: xorpfd

sim order: xi1 xi2 xi3 xi5 xi4 xi7 xi8

Note that if you want to specify the order of instance execution in the top module in the

netlist (i.e., the highest cellview in the hierarchy), but your netlist does not include the

top module within a .subckt definition, then simply use the same description technique but

specify the module name as ‘top’, i.e.,

module: top

sim order: xi8 xi6 . . .

Note that the default behavior for the Sue2 setup is to include the top module within a

.subckt definition, in which case you refer to the top module by its schematic cell name

rather than by ‘top’.

CppSim will check that all instances are included in your list, and also alert you to any

instance names not being present in the associated netlist description of the module.

Note that there is an alternative method of specifying the order of execution of the

instances within a cell that does not involve changes to the modules.par file. Specifically,

CppSim reserves the parameter ‘sim order’ to specify the order of execution of instances

within a cell, so that the user may add this parameter to each instance and set the execution

order in their schematic editor. If this method is used, all instances in the cell must have

‘sim order’ as a parameter, and its value for a given instance should be set lower than the

values of other instances that should be executed after it. In other words, CppSim orders

the instances from lowest to highest ‘sim order’ value. One can use decimal values for the

‘sim order’ value, so that an instance with ‘sim order=1.5’ executes after an instance with

‘sim order=1’ and before an instance with ‘sim order=2’.

6.18 stop current alter run

In some cases it is desirable to stop a current alter run simulation after a given condition

is met. One can do this by simply asserting the ‘stop current alter run’ flag within any

module. An example is:

64 CHAPTER 6. WRITING CODE FOR PRIMITIVES

module: stop alter run on match

parameters:

inputs: int in1, int in2

outputs:

static variables:

classes:

init:

code:

if (in1 == in2)

{ 10

printf("Stop alter run asserted by 'stop_alter_run_on_match' module\n");

stop current alter run = 1;

}

6.19 timing sensitivity:

The ‘timing sensitivity:’ statement allows execution of the CppSim module code within the

‘code:’ section only when the conditions of this statement are met. As an example, the

‘code:’ section of the module will only be executed when positive edges of the input ‘clk’

signal are encountered by specifying

timing sensitivity: posedge clk

Likewise, the ‘code:’ section will only be executed on falling edges of the input ‘clk’ signal

by specifying

timing sensitivity: negedge clk

By not including a posedge or negedge statement, the ‘code:’ section will be executed at

every transition of the corresponding input signal. As an example, the ‘code:’ section is

executed on both positive and negative edges of the input ‘inp a’ signal by specifying

timing sensitivity: inp a

Finally, one can use the ‘or’ and ‘and’ operators to control the execution of the ‘code:’

section:

timing sensitivity: inp a or (inp b and inp c)

In this last example, the ‘code:’ section will not execute unless inp a transitions, or inp b

and inp c both transition at the same time.

Note that the ‘timing sensitivity:’ command is only marginally useful in CppSim, but

proves very useful for VppSim. To explain, without a ‘timing sensitivity:’ statement for

6.19. TIMING SENSITIVITY: 65

a given module, VppSim will execute the CppSim module every single time step. Since

CppSim modules require PLI calls within the main Verilog simulator that is utilized, such

repeated execution is extremely costly and will dramatically lower the speed of simulation.

By using a ‘timing sensitivity:’ statement, the Verilog PLI calls for a module will only occur

when the specified conditions are met. Since these conditions (i.e., posedge, negedge, etc.)

are checked at the Verilog level, the simulation efficiency is greatly improved and the cost of

calling PLI routines greatly reduced since they happen at a much less frequent rate.

66 CHAPTER 6. WRITING CODE FOR PRIMITIVES

Chapter 7

General Purpose CppSim Classes

This chapter provides reference information on the general purpose classes available in the

CppSim package. Most of these classes update the output one sample at a time as new

input values are fed in. Exceptions to this rule are the Vector, IntVector, List and Clist

classes, which offer the ability to perform operations on sequences. These classes prove

very useful when simulating the behavior of communication systems that require algorithms

to be performed on a sequence of data values. For instance, in an OFDM communication

system, FFT and inverse FFT operations must be performed on sequences of data in order

to implement the modulation and demodulation functions. The Vector, IntVector, and Clist

classes offer support of such operations, as well as a variety of other processing functions.

The description of each class is partitioned into several different sections:

• Declaration: specification of the object behavior,

• Redefinition: redefinition of the object behavior,

• Variables: accessible output and state variables,

• Functions: supported operations on the object,

• Example of Usage: example code.

In each section, an attempt has been made to use a large number of examples to convey the

fundamental concepts associated with the respective class.

67

68 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

7.1 Vector and IntVector

Vector objects are arrays with double-valued entries, while IntVector objects are arrays with

integer-valued entries. These classes are special in that they can be passed between modules

defined in module.par files. Please look at the modules.par file that comes with the standard

CppSim installation and search for Vector to see examples of how to use these classes as

input and outputs of modules. (Note that, at this time, no other classes can be passed as

inputs/outputs between modules that are defined in module.par files)

Declaration

// Basic method (use within CppSim modules.par files):

Vector vec1,vec2;

IntVector ivec1,ivec2;

// For debugging in standalone code (but ∗not∗ within modules.par files):

Vector vec1("module_name","vec1"),vec2("module_name","vec2");

IntVector vec1("module_name","ivec1"),vec2("module_name","ivec2");

Variables

// Elements within Vector or IntVector classes should NOT be directly accessed!

// — For a given vector A, always use the class functions such as

// — A.get length(), A.get elem(index), A.set elem(index,val), etc.

Functions

/////////////// Functions within Vector and IntVector classes ///////////////

//// i.e., for vector A: length = A.get length(), A.set elem(0,5.0), . . . ////

int get length(); // get length of the vector

void set length(int length); //set length of the vector (all entries are initialized to 0)

double get elem(int index); // get elem[index] of vector (index starts at 0)

void set elem(int index, double val); set elem[index] = val for vector (index starts at 0)

char ∗get name(); // get name of the vector

char ∗get module name(); // get name of the module that vector was created in

void copy(const Vector &other); // copy elements of vector ’other’ into this vector 10

void copy(const IntVector &other); // copy elements of vector ’other’ into this vector

void load(char ∗filename); // load contents of ’filename’ into vector

void save(char ∗filename); // save contents of vector into ’filename’

///////////// Functions that operate on Vectors and IntVectors /////////////

//// i.e., for vectors A,B,C: add(A,B,C), get var(A), copy(A,B) ////

7.1. VECTOR AND INTVECTOR 69

//// for vectors A,C and scalar x: add(A,x,C), add(x,A,C) ////

// Transform between real-valued and integer-valued vectors

void real to int(const Vector &in, const IntVector &out); 20

void int to real(const IntVector &in, const Vector &out);

// Copy contents of ’from’ vector to ’to’ vector

void copy(const Vector &from, const Vector &to);

void copy(const IntVector &from, const IntVector &to);

// Copy contents of list to vector (note: copy from vector to list using list1.copy(vec1);)

void copy(const List &from, const Vector &to);

void copy(const List &from, const IntVector &to);

30

// Create a vector with Gaussian entries of standard deviation std dev

void gauss ran vector(double std dev, int length, const Vector &A);

// Create a sinc function vector: sin(pi∗x)/(pi∗x)
// where x is swept from -step val∗(length-1)/2:step val:step val∗(length-1)/2
void sinc vector(double step val, int length, const Vector &A);

// Get area of input vector

double get area(const Vector &A);

// Get mean of input vector 40

double get mean(const Vector &A);

// Get variance of input vector

double get var(const Vector &A);

// Print contents of input vector

void print(const Vector &x);

void print(const IntVector &x);

// Save contents of input vector to file

void save(char ∗filename, const Vector &in); 50

void save(char ∗filename, const IntVector &in);

// Load contents of file into input vector

void load(char ∗filename, const Vector &in);

void load(char ∗filename, const IntVector &in);

// Perform FFT and inverse FFT operations on vectors

void fft(const Vector &real, const Vector &imag, const Vector &fft real, const Vector &fft imag);

70 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

void fft(const IntVector &real, const IntVector &imag, const Vector &fft real, const Vector &fft imag);

void ifft(const Vector &real, const Vector &imag, const Vector &ifft real, const Vector &ifft imag);

void ifft(const IntVector &real, const IntVector &imag, const Vector &ifft real, const Vector &ifft imag); 60

void real fft(const Vector &in, const Vector &fft real, const Vector &fft imag);

void real fft(const IntVector &in, const Vector &fft real, const Vector &fft imag);

// Add vectors or scalars to other vectors

void add(const Vector &a, const Vector &b, const Vector &y);

void add(const IntVector &a, const IntVector &b, const IntVector &y);

void add(double a, const Vector &b, const Vector &y);

void add(int a, const IntVector &b, const IntVector &y);

void add(const Vector &a, double b, const Vector &y);

void add(const IntVector &a, int b, const IntVector &y); 70

// Subtract vectors or scalars from other vectors

void sub(const Vector &a, const Vector &b, const Vector &y);

void sub(const IntVector &a, const IntVector &b, const IntVector &y);

void sub(double a, const Vector &b, const Vector &y);

void sub(int a, const IntVector &b, const IntVector &y);

void sub(const Vector &a, double b, const Vector &y);

void sub(const IntVector &a, int b, const IntVector &y);

// Multiply (element-by-element) vectors or scalars by other vectors 80

void mul elem(const Vector &a, const Vector &b, const Vector &y);

void mul elem(const IntVector &a, const IntVector &b, const IntVector &y);

void mul elem(double a, const Vector &b, const Vector &y);

void mul elem(int a, const IntVector &b, const IntVector &y);

void mul elem(const Vector &a, double b, const Vector &y);

void mul elem(const IntVector &a, int b, const IntVector &y);

// Divide (element-by-element) vectors or scalars by other vectors

void div elem(const Vector &a, const Vector &b, const Vector &y);

void div elem(const IntVector &a, const IntVector &b, const IntVector &y); 90

void div elem(double a, const Vector &b, const Vector &y);

void div elem(int a, const IntVector &b, const IntVector &y);

void div elem(const Vector &a, double b, const Vector &y);

void div elem(const IntVector &a, int b, const IntVector &y);

// Compute inner product of vectors

double inner product(const Vector &A, const Vector &B);

int inner product(const IntVector &A, const IntVector &B);

7.1. VECTOR AND INTVECTOR 71

Example of Usage

#include "cppsim_classes.h"

void my sum of squares func(const Vector &a, const Vector &b, const Vector &c);

void my sum of squares func2(const Vector &a, const Vector &b, const Vector &c);

main()

{
// declarations - include module name and vector name for debugging

Vector vec1("main_func","vec1");

Vector vec2("main_func","vec2");

Vector vec3("main_func","vec3"); 10

Vector vec4("main_func","vec4");

IntVector ivec1("main_func","ivec1");

IntVector ivec2("main_func","ivec2");

IntVector ivec3("main_func","ivec3");

/// Note: you don’t do the above for vectors contained with modules defined

/// in module.par files! CppSim automatically takes care of providing

/// such names

///

/// Alternate way of declaring the above vectors (i.e., don’t name vectors): 20

/// Vector vec1,vec2,vec3,vec4;

/// IntVector ivec1,ivec2,ivec3;

double val;

int i,length, int val;

// set length of integer vector ivec1 to length 5 and fill with entries 0 to 8

ivec1.set length(5);

length = ivec1.get length();

30

for (i = 0; i < length; i++)

ivec1.set elem(i,i∗2);

// add 3 to ivec1 and store in ivec2

add(ivec1,3,ivec2);

// add ivec2 to 5 and store in ivec2

add(5,ivec2,ivec2);

// get elem[2] (i.e., 3rd element entry) in ivec2

int val = ivec2.get elem(2); 40

72 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

// multiply all elements of ivec2 by the scalar int val

// and store in ivec3

mul elem(int val,ivec2,ivec3);

// print contents of vector ivec1 and ivec2 to screen

print(ivec1);

print(ivec2);

print(ivec3);

50

// convert integer elements of ivec3 into double values and store in vec1

int to real(ivec3,vec1);

// fill vector vec2 with random numbers generated from a Guassian distribution

// with standard deviation = 0.31, and have its length match that of vec1

gauss ran vector(0.31,vec1.get length(),vec2);

// compute the standard deviation of ivec2

double std dev val;

std dev val = sqrt(get var(vec2)); 60

// take the FFT of vec2 (assumed to be real) and

// save the real part of fft in vec1 and imag part in vec3

real fft(vec2,vec1,vec3);

// take the inverse FFT of vec1 (real part) and vec3 (imag part) and

// save the result in vec2 (real part of ifft) and vec4 (imag part of ifft)

ifft(vec1,vec3,vec2,vec4);

// take the FFT of vec1 (real part) and vec2 (imag part) and 70

// save the result in vec3 (real part) and vec4 (imag part)

fft(vec1,vec2,vec3,vec4);

// do an element-by-element multiplication of vec1 and vec3 and store result in vec2

// (which over-writes its previous contents)

mul elem(vec1,vec3,vec2);

// do an element-by-element division of vec1 and vec3 (i.e., vec1/vec3) instead

div elem(vec1,vec3,vec2);

80

// example function shown below

7.1. VECTOR AND INTVECTOR 73

my sum of squares func(vec2,vec1,vec3);

// second example function shown below

my sum of squares func2(vec3,vec2,vec1);

}

// The following example function illustrates how one can great their own custom functions 90

// using the Vector class. This example illustrates the preferred method for most

// applications, which is to use the Vector class routines to perform all operations.

// For time critical applications (in which you want to avoid the extensive error checking done

// in the Vector class routines), one might want to consider using the Vector

// structure method shown below this one.

void my sum of squares func(const Vector &a, const Vector &b, const Vector &c)

{
int i;

double val;

100

if (a.get length() != b.get length())

{
printf("error in 'my_sum_of_squares_func':\n");

printf(" length of vectors 'a' and 'b' must match!\n");

printf(" in this case, vector 'a' has length %d\n",a.get length());

printf(" vector 'b' has length %d\n",b.get length());

printf(" vector 'a' is named '%s' (originating module: '%s')\n",

a.name, a.module name);

printf(" vector 'b' is named '%s' (originating module: '%s')\n",

b.name, b.module name); 110

exit(1);

}

c.set length(a.get length());

for (i = 0; i < a.get length(); i++)

{
val = a.get elem(i)∗a.get elem(i) + b.get elem(i)∗b.get elem(i);

c.set elem(i,val);

} 120

}

74 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

// This example function makes use of the vector structures embedded within Vector classes.

// The advantage of extracting the vector structures is that you can directly operate on

// the vector element values and avoid the time required to do error checking.

// This should only be done for time intensive functions where you are committed to do upfront

// error checking to save computation time.

// BEWARE: it’s easy to create segmentation faults if you use this method - you must be careful!!

// (for those lazy at doing error checking, use the method above - segmentation faults are hard to debug) 130

void my sum of squares func2(const Vector &a, const Vector &b, const Vector &c)

{
int i;

vector struct ∗a vec,∗b vec,∗c vec;

a vec = extract vector struct(a);

b vec = extract vector struct(b);

c vec = extract vector struct(c);

if (a vec−>length != b vec−>length) 140

{
printf("error in 'my_sum_of_squares_func2':\n");

printf(" length of vectors 'a' and 'b' must match!\n");

printf(" in this case, vector 'a' has length %d\n",a vec−>length);

printf(" vector 'b' has length %d\n",b vec−>length);

printf(" vector 'a' is named '%s' (originating module: '%s')\n",

a vec−>name, a vec−>module name);

printf(" vector 'b' is named '%s' (originating module: '%s')\n",

b vec−>name, b vec−>module name);

exit(1); 150

}

set length(a vec−>length,c vec);

for (i = 0; i < a vec−>length; i++)

c vec−>elem[i] = a vec−>elem[i]∗a vec−>elem[i] + b vec−>elem[i]∗b vec−>elem[i];

}

7.2. MATRIX AND INTMATRIX 75

7.2 Matrix and IntMatrix

Matrix objects are two-dimensional arrays with double-valued entries, while IntMatrix ob-

jects are two-dimensional arrays with integer-valued entries. These classes operate in a

similar manner to vectors, but currently cannot be passed between modules.

Declaration

// Basic method (use within CppSim modules.par files):

Matrix mat1,mat2;

IntMatrix imat1,imat2;

// For debugging in standalone code (but ∗not∗ within modules.par files):

Matrix mat1("module_name","mat1"),mat2("module_name","mat2");

IntMatrix mat1("module_name","imat1"),mat2("module_name","imat2");

Variables

// Elements within Matrix or IntMatrix classes should NOT be directly accessed!

// — For a given matrix A, always use the class functions such as

// — A.get rows(), A.get elem(row,col), A.set elem(row,col,val), etc.

Functions

/////////////// Functions within Matrix and IntMatrix classes ///////////////

//// i.e., for matrix A: rows = A.get rows(), A.set elem(0,1,5.0), . . . ////

int get rows(); // get number of rows of the matrix

int get cols(); // get number of columns of the matrix

void set size(int rows,int cols); //set size of the matrix (all entries are initialized to 0)

double get elem(int row,int col); // get elem[row][col] of matrix (indices start at 0)

void set elem(int row,int col,double val); set elem[row][col] = val for matrix (indices start at 0)

char ∗get name(); // get name of the matrix

char ∗get module name(); // get name of the module that matrix was created in 10

void copy(const Matrix &other); // copy elements of matrix ’other’ into this matrix

void copy(const IntMatrix &other); // copy elements of matrix ’other’ into this matrix

void load(char ∗filename); // load contents of ’filename’ into matrix

void save(char ∗filename); // save contents of matrix into ’filename’

///////////// Functions that operate on Matrix and IntMatrix objects /////////////

//// i.e., for matrices A,B,C: add(A,B,C), get var(A), copy(A,B) ////

//// for matrices A,C and scalar x: add(A,x,C), add(x,A,C) ////

// Transform between real-valued and integer-valued matrices 20

76 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

void real to int(const Matrix &in, const IntMatrix &out);

void int to real(const IntMatrix &in, const Matrix &out);

// Copy contents of ’from’ matrix to ’to’ matrix

void copy(const Matrix &from, const Matrix &to);

void copy(const IntMatrix &from, const IntMatrix &to);

// Print contents of input matrix

void print(const Matrix &x);

void print(const IntMatrix &x); 30

// Save contents of input matrix to file

void save(char ∗filename, const Matrix &in);

void save(char ∗filename, const IntMatrix &in);

// Load contents of file into input matrix

void load(char ∗filename, const Matrix &in);

void load(char ∗filename, const IntMatrix &in);

// Transpose matrix A and store result in matrix B

void trans(const Matrix &A, const Matrix &B); 40

void trans(const IntMatrix &A, const IntMatrix &B);

// Compute Singular Value Decomposition of matrix A

void svd(const Matrix &A, const Matrix &U, const Matrix &W, const Matrix &V);

// Compute inverse of matrix A and store in B

void inv(const Matrix &A, const Matrix &B);

// Compute least square estimate of x where: A∗x = b + error (x and b are vectors)

void least sq(const Matrix &A, const Matrix &b, const Matrix &x);

// Add matrices or scalars to other matrices 50

void add(const Matrix &A, const Matrix &B, const Matrix &C);

void add(const IntMatrix &A, const IntMatrix &B, const IntMatrix &C);

void add(const Matrix &A, double B, const Matrix &C);

void add(double A, const Matrix &B, const Matrix &C);

void add(const IntMatrix &A, int B, const IntMatrix &C);

void add(int A, const IntMatrix &B, const IntMatrix &C);

// Subtract matrices or scalars from other matrices

void sub(const Matrix &A, const Matrix &B, const Matrix &C);

void sub(const IntMatrix &A, const IntMatrix &B, const IntMatrix &C); 60

void sub(const Matrix &A, double B, const Matrix &C);

7.2. MATRIX AND INTMATRIX 77

void sub(double A, const Matrix &B, const Matrix &C);

void sub(const IntMatrix &A, int B, const IntMatrix &C);

void sub(int A, const IntMatrix &B, const IntMatrix &C);

// Multiply matrices or scalars by other matrices

void mul(const Matrix &A, const Matrix &B, const Matrix &C);

void mul(const IntMatrix &A, const IntMatrix &B, const IntMatrix &C);

void mul(const Matrix &A, double B, const Matrix &C);

void mul(const IntMatrix &A, int B, const IntMatrix &C); 70

void mul(double A, const Matrix &B, const Matrix &C);

void mul(int A, const IntMatrix &B, const IntMatrix &C);

//////////// Functions that take both matrix and vector arguments /////////////

// Copy contents of vector to matrix – vector must replace an existing row or column at given index in matrix

void copy(int index, char ∗row or col, Vector &from, Matrix &to);

void copy(int index, char ∗row or col, IntVector &from, IntMatrix &to);

80

// Copy contents of row or column vector within matrix to a vector – vector is automatically sized

void copy(int index, char ∗row or col, Matrix &from, Vector &to);

void copy(int index, char ∗row or col, IntMatrix &from, IntVector &to);

// Multiply a matrix and vector and store result in a vector

// — vectors are assumed to be column vectors

void mul(const Matrix &A, const Vector &B, const Vector &C);

void mul(const IntMatrix &A, const IntVector &B, const IntVector &C);

// — vectors are assumed to be row vectors

void mul(const Vector &A, const Matrix &B, const Vector &C); 90

void mul(const IntVector &A, const IntMatrix &B, const IntVector &C);

// Compute least square estimate of x where: A∗x = b + error (x and b are vectors)

void least sq(const Matrix &A, const Vector &B, const Vector &X);

Example of Usage

#include "cppsim_classes.h"

void my sum of squares func(const Matrix &a, const Matrix &b, const Matrix &c);

void my sum of squares func2(const Matrix &a, const Matrix &b, const Matrix &c);

main()

{

78 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

// declarations - include module name and vector name for debugging

Matrix mat1("main_func","mat1");

Matrix mat2("main_func","mat2");

Matrix mat3("main_func","mat3"); 10

Matrix mat4("main_func","mat4");

IntMatrix imat1("main_func","imat1");

IntMatrix imat2("main_func","imat2");

IntMatrix imat3("main_func","imat3");

Vector vec1("main_func","vec1");

/// Note: you don’t do the above for matrices contained with modules defined

/// in module.par files! CppSim automatically takes care of providing

/// such names

/// 20

/// Alternate way of declaring the above matrices (i.e., don’t name matrices):

/// Matrix mat1,mat2,mat3,mat4;

/// IntMatrix imat1,imat2,imat3;

/// Vector vec1;

double val;

int i,j,rows,cols, int val;

// set size of integer matrix imat1 to 5 by 7 and fill with entries i∗j
imat1.set size(5,7); 30

rows = imat1.get rows();

cols = imat1.get cols();

for (i = 0; i < rows; i++)

for (j = 0; j < cols; j++)

imat1.set elem(i,j,i∗j);

// add 3 to all entries in imat1 and store in imat2

add(imat1,3,imat2);

// add 5 to all entries in imat2 and store in imat2 40

add(5,imat2,imat2);

// get elem[2][3] (i.e., 3rd row, 4th column entry) in imat2

int val = imat2.get elem(2,3);

// multiply all elements of imat2 by the scalar int val

// and store in imat3

7.2. MATRIX AND INTMATRIX 79

mul(int val,imat2,imat3);

// print contents of matrix imat1 and imat2 to screen 50

print(imat1);

print(imat2);

print(imat3);

// convert integer elements of imat3 into double values and store in mat1

int to real(imat3,mat1);

// copy fourth row of matrix mat1 to vector vec1

copy(3,"row",mat1,vec1);

60

// instead copy third column of matrix mat1 to vector vec1

copy(2,"col",mat1,vec1);

// multiply vec1 by 3

mul elem(3,vec1,vec1);

// replace third column of matrix mat1 with vector vec1

copy(2,"col",vec1,mat1);

// tranpose matrix mat1 and store in mat2 70

trans(mat1,mat2);

// example function shown below

my sum of squares func(mat1,mat1,mat3);

// second example function shown below

my sum of squares func2(mat2,mat2,mat1);

}
80

// The following example function illustrates how one can great their own custom functions

// using the Matrix class. This example illustrates the preferred method for most

// applications, which is to use the Matrix class routines to perform all operations.

// For time critical applications (in which you want to avoid the extensive error checking done

// in the Matrix class routines), one might want to consider using the Matrix

// structure method shown below this one.

void my sum of squares func(const Matrix &a, const Matrix &b, const Matrix &c)

80 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

{
int i,j; 90

double val;

if (a.get rows() != b.get rows() | | a.get cols() != b.get cols())

{
printf("error in 'my_sum_of_squares_func':\n");

printf(" size of matrices 'a' and 'b' must match!\n");

printf(" in this case, matrix 'a' is %d by %d\n",a.get rows(),a.get cols());

printf(" matrix 'b' is %d by %d\n",b.get rows(),b.get cols());

printf(" matrix 'a' is named '%s' (originating module: '%s')\n",

a.name, a.module name); 100

printf(" matrix 'b' is named '%s' (originating module: '%s')\n",

b.name, b.module name);

exit(1);

}

c.set size(a.get rows(),a.get cols());

for (i = 0; i < a.get rows(); i++)

for (j = 0; j < a.get cols(); j++)

{ 110

val = a.get elem(i,j)∗a.get elem(i,j) + b.get elem(i,j)∗b.get elem(i,j);

c.set elem(i,j,val);

}
}

// This example function makes use of the matrix structures embedded within Matrix classes.

// The advantage of extracting the matrix structures is that you can directly operate on

// the matrix element values and avoid the time required to do error checking.

// This should only be done for time intensive functions where you are committed to do upfront 120

// error checking to save computation time.

// BEWARE: it’s easy to create segmentation faults if you use this method - you must be careful!!

// (for those lazy at doing error checking, use the method above - segmentation faults are hard to debug)

void my sum of squares func2(const Matrix &a, const Matrix &b, const Matrix &c)

{
int i,j;

matrix struct ∗a mat,∗b mat,∗c mat;

a mat = extract matrix struct(a);

7.2. MATRIX AND INTMATRIX 81

b mat = extract matrix struct(b); 130

c mat = extract matrix struct(c);

if (a mat−>rows != b mat−>rows | | a mat−>cols != b mat−>cols)

{
printf("error in 'my_sum_of_squares_func2':\n");

printf(" length of matrices 'a' and 'b' must match!\n");

printf(" in this case, matrix 'a' is %d by %d\n",a mat−>rows,a mat−>cols);

printf(" matrix 'b' is %d by %d\n",b mat−>rows,b mat−>cols);

printf(" matrix 'a' is named '%s' (originating module: '%s')\n",

a mat−>name, a mat−>module name); 140

printf(" matrix 'b' is named '%s' (originating module: '%s')\n",

b mat−>name, b mat−>module name);

exit(1);

}

set size(a mat−>rows,a mat−>cols,c mat);

for (i = 0; i < a mat−>rows; i++)

for (j = 0; j < a mat−>cols; j++)

c mat−>elem[i][j] = a mat−>elem[i][j]∗a mat−>elem[i][j] + b mat−>elem[i][j]∗b mat−>elem[i][j]; 150

}

82 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

7.3 List

A linked list of double values that provides storage for sequences of numbers.

Declaration

List list1;

Variables

double out; // current entry value

int length; // number of entries in list

int notdone; // notdone = 0 or 1 depending if current entry is last value or not last value, respectively

Functions

double read(); // returns current element value and increments pointer

// recycles back to first element after last is read

void reset(); // reset read pointer to first element

void flush(); // delete all elements from list

int inp(double in); // add a new element of value ’in’ to the end of the list (returns list length)

double mean(); // returns mean of list element values

double var(); // returns variance of list element values

void add(const List &other); // adds, element by element, other list values to list values

void add(double in); // adds constant ’in’ to all element values in list

void mul(const List &other); // multiplies, element by element, other list values to list values 10

void mul(double in); // multiplies all element values in list by constant ’in’

void conv(const List &other); // convolves list with other list

void cat(const List &other); // concatonates other list to list

int load(char ∗filename); // loads values from file into list (previous elements destroyed, returns list length)

void save(char ∗filename); // saves element values to file

void copy(const List &other); // copy other list into list (previous elements destroyed)

void copy(const List &Vector); // copy other real-valued vector into list (previous elements destroyed)

void copy(const List &IntVector); // copy other integer-valued vector into list (previous elements destroyed)

void print(char ∗name); // print list to stdout using ’name’ as label

20

// New functions as of 6/5/04

// Note: see Delay class (inp function) in cppsim classes.cpp to see how to use these

read without incrementing(); // reads current element but does not increment pointer

write(double in); // writes to the current element value and increments pointer

// recycles back to first element after last one is written

write without incrementing(double in); // writes to the current element value but does not increment pointer

remove first entry(); // removes first entry in the list - this is useful

7.3. LIST 83

// for creating a FIFO buffer (as done in the Delay class)

Example of Usage

#include "com_blocks.h"

main()

{
// declarations

List list1,list2,list3,list4;

double val;

int i;

// incrementally load values into list1 10

list1.inp(1.0);

list1.inp(−1.0);

list1.inp(3.0);

list1.inp(5.0);

// incrementally load values into list2

list2.inp(3.0);

list2.inp(−4.0);

list2.inp(7.0);

list2.inp(5.0); 20

// load values into list3 from file

list3.load("list3.dat");

// copy all entries of list3 into list4 (all previous list4 entries deleted)

// (list3 unchanged)

list4.copy(list3);

// concatonate list2 and list4, store result in list4 (list2 unchanged)

list4.cat(list2);

30

// illustrate read() by printing out entries of list4 ‘by hand’

list4.reset(); // resets read pointer to first entry

i = 1;

while(list4.notdone)

{
val = list4.read(); // read current entry, increment read pointer

printf("list4[%d] = %5.3f\n",i++,val);

}

84 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

// illustrate recycling property of read() by reading beyond length of list

// also illustrate that you can refer to list4.out after read() instead of recording its return value 40

list4.reset(); // resets read pointer to first entry

for (i = 1; i <= 30; i++) // will recycle through elements of list4 many times

{
list4.read(); // read current entry, increment pointer

printf("list4[%d] = %5.3f\n",i,list4.out);

}
// print out entries of list4 using print function

list4.print("list4"); // character string serves as label for printout

// save entries of list4 to file ‘list4.dat’ 50

list4.save("list4.dat");

// purge all entries from list4

list4.flush();

// add list1 and list2 elements, store result in list1 (list2 unchanged)

list1.add(list2);

// add the constant 5.0 to all elements in list2

list2.add(5.0);

60

// multiply list1 and list2 elements, store result in list2 (list1 unchanged)

list2.mul(list1);

// muliply list1 by the constant -3.0

list1.mul(−3.0);

// convolve list1 and list3 elements, store result in list3 (list1 unchanged)

list3.conv(list1);

// calculate mean of list3

val = list3.mean(); 70

// calculate variance of list3

val = list3.var();

}

7.4. CLIST 85

7.4 Clist

A grouping of two linked lists of double values that form a complex sequence.

Declaration

Clist clist1;

Variables

List real; // sequence of real element values

List imag; // sequence of imag element values

double outr; // current real entry value

double outi; // current imag entry value

int length; // number of entries in clist

int notdone; // notdone = 0 or 1 depending if current complex entry is last value or not last value, respectively

Functions

void read(); // read current element value into outr and outi and increment pointer

// recycles back to first complex element after last is read

void reset(); // reset read pointer to first complex element

void flush(); // delete all elements from clist

int inp(double rin, double iin); // add a new element to the end of the list (returns list length)

// real part of new element is ’rin’, and imag part of new element is ’iin’

int inp(const List &rin, const List &iin); // create a complex sequence using list ’rin’ as

// real part and list ’iin’ for imag part (all previous entries destroyed, returns list length)

void cat(const Clist &other); // concatonates other clist to clist

void add(const Clist &other); // adds, element by element, other clist values to clist values 10

void add(double rin, double iin); // adds constant ’rin + j∗iin’ to all element values in clist

void mul(const Clist &other); // multiplies, element by element, other clist values to clist values

void mul(double rin, double iin); // multiplies all element values in clist by constant ’rin + j∗iin’
void conv(const Clist &other); // convolves clist with other clist

void conv(const List &other); // convolves clist with other list (other list assumed to be real)

void copy(const Clist &other); // copy other list into list (previous elements destroyed)

void fft(const List &data); // calculate fft of list ’data’ (’data’ assumed to be real)

void fft(const Clist &data); // calculate fft of clist ’data’ (data is complex)

void fft(const List &data real, const List &data imag); // calculate fft of sequence with real part

//’data real’ and imag part ’data imag’ 20

void ifft(const Clist &fft in); // calculate inverse fft of clist ’fft in’

void ifft(const List &fft real, const List &fft imag); // calculate inverse fft of sequence with real part

//’fft real’ and imag part ’fft imag’

void print(char ∗name); // print clist to stdout using ’name’ as label

86 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

Example of Usage

#include "com_blocks.h"

main()

{
// declarations

List list1,list2;

Clist clist1,clist2;

int i;

// incrementally load values into list1 10

list1.inp(1.0);

list1.inp(−1.0);

list1.inp(3.0);

list1.inp(5.0);

// incrementally load values into list2

list2.inp(3.0);

list2.inp(−4.0);

list2.inp(7.0);

list2.inp(5.0); 20

// create a complex list with list1 as real part, list2 as imag part

clist1.inp(list1,list2);

// copy clist1 to clist2

clist2.copy(clist1);

// change clist1 to its complex conjugate

clist1.imag.mul(−1.0);

30

// multiply elements of clist1 and clist2 and store in clist1 (clist2 unchanged)

clist1.mul(clist2);

// add elements of clist1 and clist2 and store in clist2 (clist1 unchanged)

clist2.add(clist1);

// multiply elements of clist2 by 1+j3

clist2.mul(1,3);

// add 2-j7 to elements of clist2 40

7.4. CLIST 87

clist2.add(2,−7);

// concatonate clist1 to clist2

clist2.cat(clist1);

// convolve clist1 and clist2 and place in clist2 (clist1 unchanged)

clist2.conv(clist1);

// compute the fft of clist2 and place in clist1 (clist2 unchanged)

clist1.fft(clist2); 50

// compute the ifft of clist1 and place back into clist1

clist1.ifft(clist1);

// compute the fft of list1 (assumed real) and place in clist2

clist2.fft(list1);

// delete all entries in clist2

clist2.flush();

// enter in new values 60

clist2.inp(1.0,2.0); // add element of value 1.0 + j2.0

clist2.inp(−1.0,3.0); // add element of value -1.0 + j3.0

clist2.inp(7.0,4.0); // add element of value 7.0 + j4.0

clist2.inp(5.0,1.0); // add element of value 5.0 + j

// illustrate read() by printing out entries of clist2 ‘by hand’

clist2.reset(); // resets read pointer to first complex entry

i = 1;

while(clist2.notdone)

{ 70

clist2.read(); // read current complex entry, increment pointer

printf("clist2[%d] = %5.3f + j%5.3f\n",i++,clist2.outr,clist2.outi);

}
// illustrate recycling property of read() by reading beyond length of list

clist2.reset(); // resets read pointer to first complex entry

for (i = 1; i <= 20; i++) // will recycle through complex elements of clist2 many times

{
clist2.read(); // read current complex entry, increment pointer

printf("clist2[%d] = %5.3f + j%5.3f\n",i,clist2.outr,clist2.outi);

} 80

// print out entries of clist2 using print function

88 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

clist2.print("clist2"); // character string serves as label for printout

// save values of clist2 to files

clist2.real.save("real.dat");

clist2.imag.save("imag.dat");

}

7.5. PROBE 89

7.5 Probe

Save data in single-precision format to a binary file which can be read with loadsig cppsim

in Matlab.

Declaration

Probe probe1("test.tr0"); // save probed data in file ’test.tr0’, sample period = 1

Probe probe2("test2.tr0",1e−6); // save probed data in file ’test2.tr0’, sample period = 1e-6

Probe probe3("test3.tr0",1e−6,10); // save probed data in file ’test3.tr0’, sample period = 1e-6

// subsample data by a factor of 10 before saving to file

Variables

None

Functions

void inp(double node value, char ∗node name); // send double value to probe file with label ’node name’

void inp(int int node value, char ∗node name); // send integer value to probe file with label ’node name’

Example of Usage

#include "com_blocks.h"

main()

{
int i;

double Ts;

double sig1,sig2;

Ts = 1e−6;

Probe probe1("test.tr0"); 10

Probe probe2("test2.tr0",Ts);

Probe probe3("test3.tr0",Ts,10);

Probe probe4("test4.tr0",Ts);

for (i = 0; i < 1000; i++)

{
sig1 = sin((2∗PI/200)∗i);
sig2 = cos((2∗PI/200)∗i);
// save signals to ’test.tr0’ with TIME signal in file having period = 1

probe1.inp(sig1,"sine"); 20

probe1.inp(sig2,"cosine");

90 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

// save signals to ’test2.tr0’ with TIME signal in file having period = Ts

probe2.inp(sig1,"sine");

probe2.inp(sig2,"cosine");

// save signals to ’test3.tr0’ with TIME signal in file having period = Ts

// and being subsampled by a factor of 10 (i.e. only 100 samples saved per signal in this case)

probe3.inp(sig1,"sine");

probe3.inp(sig2,"cosine");

}
30

// Recommendation: don’t re-use probe statements in two different loops

for (i = 0; i < 1000; i++)

{
sig1 = sin((2∗PI/250)∗i);
sig2 = cos((2∗PI/250)∗i);
// The following probe statements will produce an error

// probe1.inp(sig1,“sine2”); // don’t do this!

// probe1.inp(sig2,“cosine2”); // don’t do this!

// Probe statements used in previous loops must follow same order of signal names probed 40

probe2.inp(sig1,"sine"); // acceptable, but not recommended

probe2.inp(sig2,"cosine"); // acceptable, but not recommended

// probe2.inp(sig1+sig2,“sum”); // will produce an error since ’sum’ not probed in loop above

// The following probe statements are fine sinece probe4 was not used above

probe4.inp(sig1,"sine"); // recommended approach - new probe statement for this loop

probe4.inp(sig2,"cosine"); // ditto - this is fine

probe4.inp(sig1+sig2,"sum"); // ditto - this is fine

}
} 50

7.6. PROBE64 91

7.6 Probe64

Save data in double-precision format to a binary file which can be read with loadsig cppsim

in Matlab.

Declaration

Probe64 probe1("test.tr0"); // save probed data in file ’test.tr0’, sample period = 1

Probe64 probe2("test2.tr0",1e−6); // save probed data in file ’test2.tr0’, sample period = 1e-6

Probe64 probe3("test3.tr0",1e−6,10); // save probed data in file ’test3.tr0’, sample period = 1e-6

// subsample data by a factor of 10 before saving to file

Variables

None

Functions

void inp(double node value, char ∗node name); // send double value to probe file with label ’node name’

void inp(int int node value, char ∗node name); // send integer value to probe file with label ’node name’

Example of Usage

#include "com_blocks.h"

main()

{
int i;

double Ts;

double sig1,sig2;

Ts = 1e−6;

Probe64 probe1("test.tr0"); 10

Probe64 probe2("test2.tr0",Ts);

Probe64 probe3("test3.tr0",Ts,10);

Probe64 probe4("test4.tr0",Ts);

for (i = 0; i < 1000; i++)

{
sig1 = sin((2∗PI/200)∗i);
sig2 = cos((2∗PI/200)∗i);
// save signals to ’test.tr0’ with TIME signal in file having period = 1

probe1.inp(sig1,"sine"); 20

probe1.inp(sig2,"cosine");

92 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

// save signals to ’test2.tr0’ with TIME signal in file having period = Ts

probe2.inp(sig1,"sine");

probe2.inp(sig2,"cosine");

// save signals to ’test3.tr0’ with TIME signal in file having period = Ts

// and being subsampled by a factor of 10 (i.e. only 100 samples saved per signal in this case)

probe3.inp(sig1,"sine");

probe3.inp(sig2,"cosine");

}
30

// Recommendation: don’t re-use probe statements in two different loops

for (i = 0; i < 1000; i++)

{
sig1 = sin((2∗PI/250)∗i);
sig2 = cos((2∗PI/250)∗i);
// The following probe statements will produce an error

// probe1.inp(sig1,“sine2”); // don’t do this!

// probe1.inp(sig2,“cosine2”); // don’t do this!

// Probe statements used in previous loops must follow same order of signal names probed 40

probe2.inp(sig1,"sine"); // acceptable, but not recommended

probe2.inp(sig2,"cosine"); // acceptable, but not recommended

// probe2.inp(sig1+sig2,“sum”); // will produce an error since ’sum’ not probed in loop above

// The following probe statements are fine sinece probe4 was not used above

probe4.inp(sig1,"sine"); // recommended approach - new probe statement for this loop

probe4.inp(sig2,"cosine"); // ditto - this is fine

probe4.inp(sig1+sig2,"sum"); // ditto - this is fine

}
} 50

7.7. FILTER 93

7.7 Filter

Continuous-time and discrete-time filters.

Declaration

Filter difference("1 - z^-1","1"); // discrete-time first difference

Filter accum("1","1 - z^-1"); // discrete-time accumulator

Filter zfilt("1 - a*z^-1","1 - b*z^-1","a,b",.8,.9); // general discrete-time

// filter consisting of one pole and one zero

Filter accum lim("1","1 - z^-1","Max,Min",2.5,0.0); // discrete-time accumulator

// with max and min limits set on its output

Filter delay("z^-no","1","no",10); // delay of 10 samples (must use integer sample delay)

Filter diff("K*s","1","Ts,K",1e−6,2.0); // continuous-time differentiator K∗s
// (Ts is simulation sample period)

Filter integ("K","s","K,Ts",1,1e−6); // continuous-time integrator K/s 10

Filter RC fil("K","1 + 1/(2*pi*fo)*s","K,fo,Ts",1.0,1e3,1e−6); // continuous-time filter

// corresponding to an RC network with transfer function K/(1 + s/(2∗pi∗fo))
Filter LC fil("K","1 + 1/(wo*Q)*s + 1/(wo^2)*s^2","Ts,K,wo,Q",1e−6,1.0,1e3∗2∗PI,1.2);

// continuous-time filter corresponding to an LC network with

// transfer function K/(1 + 1/(wo∗Q)∗s + (s/wo)^2)

List list1;

list1.load("list1.dat"); // load data from file into list

Filter(list1,"1"); // create z-domain FIR filter whose numerator z-polynomial is created from

// list1 elements and whose denominator is 1 (see Usage example below)

Filter("1",list1); // create z-domain IIR filter whose denominator z-polynomial is created from 20

// list1 elements and whose numerator is 1

List list2;

list2.load("list2.dat");

Filter(list1,list2); // create z-domain IIR filter whose denominator z-polynomial is created from

// list1 elements and whose numerator z-polynomial is created from list2 elements

Vector vec1;

vec1.load("list1.dat"); // load data from file into real-valued vector

Filter(vec1,"1"); // create z-domain FIR filter whose numerator z-polynomial is created from

// vec1 elements and whose denominator is 1

Redefinition (this is rarely required)

// Declaration

Filter filt1("1 - z^-1","1");

// Redefine

94 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

filt1.set("1","1 - z^-1");

// Redefine again

filt1.set("K","1 + 1/(2*pi*fo)*s","K,fo,Ts",1.0,1e3,1e−6);

Variables

double out; // output of filter

char ivar; // independent variable of transfer function - either ’z’ or ’s’

int num a coeff; // number of denominator coefficients

int num b coeff; // number of numerator coefficients

Functions

double inp(double in); // input new sample to filter, resulting output is returned

void reset(double value); // set output and all state information of filter to value

Example of Usage

#include "com_blocks.h"

main()

{
List list1;

Probe probe1("test.tr0");

int i;

double in;

// incrementally load values into list1 to later set z-polynomial of a0 + a1∗z^-1 + a2∗z^-2 10

list1.inp(1.0); // set a0

list1.inp(−2.0); // set a1

list1.inp(1.0); // set a2

/////////////////// discrete-time filter implementation //////////////////////

// create two filters (cascade of which is an accumulator)

Filter double accum("1",list1);

Filter first diff("1 - z^-1","1");

in = 1.0; 20

for (i = 0; i < 1000; i++)

{
if (i == 200)

in = −1.0;

else if (i == 400)

in = 2.0;

7.7. FILTER 95

else if (i == 700) // zero out filters at the 700th sample

{
double accum.reset(0.0);

first diff.reset(0.0); 30

}

// cascade the filters

double accum.inp(in);

first diff.inp(double accum.out);

// save the signals to file ’test.tr0’ using probe1

probe1.inp(in,"in");

probe1.inp(double accum.out,"accum2");

probe1.inp(first diff.out,"accum1"); 40

}

/////////////////// continuous-time filter implementation //////////////////////

double sample per;

sample per = 1e−6; // choose 1 us sample period

Probe probe2("test2.tr0",sample per); // need a new probe statement for new iteration loop

// create two filters (cascade of which is an integrator)

Filter double integ("K","s^2","K,Ts",1e5,sample per); 50

Filter diff("s","1","Ts",sample per);

in = 1.0;

for (i = 0; i < 1000; i++)

{
if (i == 200)

in = −1.0;

else if (i == 400)

in = 2.0;

else if (i == 700) // zero out filters at the 700th sample 60

{
double integ.reset(0.0);

diff.reset(0.0);

}

// cascade the filters

double integ.inp(in);

96 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

diff.inp(double integ.out);

// save the signals to file ’test2.tr0’ using probe2 70

probe2.inp(in,"in");

probe2.inp(double integ.out,"int2");

probe2.inp(diff.out,"int1");

}
}

7.8. AMP 97

7.8 Amp

General amplifier with nonlinear characteristic specified by a polynomial and saturating

characteristic specified by Min, Max values.

Declaration

Amp amp("off + A*x","off,A",1.0,5.0); // amp offset of 1 V, gain of 5

Amp amp2("off + A*x + A1*x^2 + A2*x^(1/2)","off,A,A1,A2",.5,10.0,1,.1); // nonlinear

// characterstic described by a polynmomial

Amp amp("off + A*x","off,A,Min,Max",1.0,5.0,0.5,2.0); // Min output is 0.5, Max output is 2.0

Redefinition (this is rarely required)

// Declaration

Amp amp("off + A*x","off,A",1.0,5.0); // amp offset of 1 V, gain of 5

// Redefine

amp.set("off + A*x + A1*x^2 + A2*x^(1/2)","off,A,A1,A2",.5,10.0,1,.1);

// Redefine again

amp.set("off + A*x","off,A,Min,Max",1.0,5.0,0.5,2.0);

Variables

double out; // output of amplifier

Functions

double inp(double in); // input voltage to amp, returns resulting value of out

Example of Usage

#include "com_blocks.h"

main()

{
int i;

double Ts;

double in;

Ts = 1e−6;

Probe probe1("test.tr0",Ts); 10

// create an amplifier with offset -0.5, gain 3.0, and saturation at 0 (min) and 2.0 (max)

Amp amp1("off + A*x","off,A,Max,Min",−0.5,3.0,2.0,0.0);

98 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

for (i = 0; i < 1000; i++)

{
in = (1.0/1000.0)∗i;
amp1.inp(in); // input ramped from 0 to 1

probe1.inp(in,"in"); // save input of amp

probe1.inp(amp1.out,"out"); // save output of amp

} 20

}

7.9. EDGEDETECT 99

7.9 EdgeDetect

Output is 0 except at the rising edge of its input, at which point the output is 1. The input

must be a square wave that alternates between -1 and 1, 0 and 1, or -1 and 0.

Declaration

EdgeDetect edge1;

Variables

int out; // output is 1 if input is rising edge, 0 otherwise

Functions

int inp(double in); // returns out, input can alternate between -1 and 1,

// 0 and 1, or -1 and 0

int inp(int in); // same as previous function, but with integer input

Example of Usage

#include "com_blocks.h"

main()

{
int i;

double Ts;

double in,sig1;

int vco pos count, div pos count;

int vco neg count, div neg count;

10

Ts = 1e−9;

Probe probe1("test.tr0",Ts);

Vco vco("fc + Kv*x","fc,Kv,Ts",10e6,1e6,Ts);

Divider divider;

EdgeDetect pedge vco, pedge div;

EdgeDetect nedge vco, nedge div;

vco pos count = 0;

div pos count = 0;

vco neg count = 0; 20

div neg count = 0;

for (i = 0; i < 10000; i++)

{

100 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

in = (1.0/10000.0)∗i;
vco.inp(in); // frequency will gradually increase since in is a ramp

divider.inp(vco.out,10.0); // divide down VCO frequency by a factor of 10

if (pedge vco.inp(vco.out)) // count rising edges of VCO

vco pos count++;

if (nedge vco.inp(−vco.out)) // count falling edges of VCO 30

vco neg count++;

if (pedge div.inp(divider.out)) // count rising edges of divider output

div pos count++;

// don’t do the following: (edge module cannot be used twice in one loop)

// if (pedge div.inp(-divider.out)) // count falling edges of divider output

// div pos count++;

// instead, use a distinct edge module:

if (nedge div.inp(−divider.out)) // count falling edges of divider output

div neg count++;

40

probe1.inp(vco.out,"vco"); // save square wave output of VCO

probe1.inp(divider.out,"divide"); // save square wave output of divider

}
printf("vco_pos_count = %d, div_pos_count = %d\n",vco pos count,div pos count);

printf("vco_neg_count = %d, div_neg_count = %d\n",vco neg count,div neg count);

}

7.10. SDMBITMOD 101

7.10 SdMbitMod

Implements a multi-bit Σ-Δ modulator with a signal transfer function (STF) of 1.0 and a

noise transfer function (NTF) that is specified as a z polynomial.

Declaration

SdMbitMod sd mod1("1 - 2*z^-1 + z^-2"); // sd modulator with second order noise shaping

SdMbitMod sd mod2("1 - 3z^-1 + 3z^-2 - 1z^-3"); // sd modulator with third order noise shaping

Redefinition (this is rarely required)

// Declaration

SdMbitMod sd mod1("1 - 2*z^-1 + z^-2");

// Redefine

sd mod1.set("1 - 3z^-1 + 3z^-2 - 1z^-3");

// Redefine again

sd mod1.set("1 - z^-1");

Variables

double out; // output of sd modulator

Functions

double inp(double in); // returns sd modulator ’out’ given input ’in’

Example of Usage

#include "com_blocks.h"

main()

{
int i;

double Ts;

double in;

Ts = 1e−9;

Probe probe1("test.tr0",Ts); 10

Filter lowpass("1","1 + 1/(2*pi*fo)*s","fo,Ts",100e3,Ts);

SdMbitMod sdmod("1 - 2z^-1 + z^-2");

102 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

for (i = 0; i < 10000; i++)

{
in = sin(2∗pi∗50e3∗Ts∗i); // create a sine wave for input to the sd modulator

sdmod.inp(in); // input the sine wave into the sd modulator

lowpass.inp(sdmod.out); // filter the sd modulator output

20

probe1.inp(in,"in"); // save input sine wave

probe1.inp(sdmod.out,"sdmod"); // save output of sd modulator

probe1.inp(lowpass.out,"out"); // save output of lowpass

}
}

7.11. RAND 103

7.11 Rand

Produces a random, white sequence whose sample values are chosen according to three

different probability distributions:

• “gauss”: Gaussian distribution with mean 0 and variance 1,

• “uniform”: Uniform distribution between 0 and 1 (mean 1/2, variance 1/12),

• “bernoulli”: Bernoulli distribution — value is 1 with probability p or -1 with probability

of 1− p.

Declaration

Rand rand1("gauss"); // Gaussian distribution

Rand rand2("uniform"); // Uniform distribution

Rand rand3("bernoulli"); // Bernouilli distribution with p = 1/2

Rand rand4("bernoulli",.25); // Bernoulli distribution with p = 1/4

Variables

double out; // sequence sample chosen according to specified probability distribution

Functions

void reset(); // resets seed to -1 for random sequence (impacts all random number generators)

void set seed(int in); // sets seed to value in (impacts all random number generators)

double inp(); // returns sequence output ’out’

Example of Usage

#include "com_blocks.h"

main()

{
int i;

double Ts;

double in,noise1;

Ts = 1e−9;

Probe probe1("test.tr0",Ts); 10

Vco vco("fc + Kv*x","fc,Kv,Ts",10e6,1e6,Ts);

Rand rand1("gauss");

104 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

for (i = 0; i < 10000; i++)

{
if (i == 5000) // reset random sequence at i = 5000

rand1.reset();

if (i == 7000) // change seed value of random sequence at i = 7000

rand1.set seed(−2);

20

in = (1.0/10000.0)∗i; // create a ramp signal

noise1 = .01∗rand1.inp() + 0.2; // gaussian sequence with mean 0.2, variance (.01)^2

vco.inp(in+noise1); // add noise to input signal to VCO

probe1.inp(in+noise1,"in"); // save input to VCO

probe1.inp(noise1,"noise"); // save noise sequence

probe1.inp(vco.out,"vco"); // save square wave output of VCO

}
}

7.12. ONEOVERFPLUSWHITENOISE 105

7.12 OneOverfPlusWhiteNoise

Produces a random sequence with Gaussian distribution which is composed of white noise

that is accompanied by low frequency flicker noise. The slope of the flicker noise may be

specified as well as the corner frequency. The corner frequency is defined as the frequency

(in Hz) at which the flicker noise spectral density component is the same as the white

noise spectral density component. The white noise component always has variance 1, and

is the same as what is produced by the Rand class with “gauss” chosen for its probability

distribution.

The following commands create an object that produces white noise of variance 1 accom-

panied by flicker noise with slope -10dB/dec and corner frequency 1MHz:

double slope = -10.0;

double fcorner = 1e6;

OneOverfPlusWhiteNoise gnoise(fcorner,slope,Ts);

Alternatively, one can use the following statements to create the same object:

double slope = -10.0;

double fcorner = 1e6;

OverfPlusWhiteNoise gnoise();

gnoise.set(fcorner,slope,Ts);

Once the object is created, an updated sample from the object is obtained as

updated sample = noise scale*gnoise.inp();

where noise scale is used to appropriately scale the noise to create the desired spectral density

magnitude.

To see this Class applied to the noise generation for a voltage-controlled oscillator, ex-

amine the module vco with 1f noise found in the CppSimModules library. To see it applied

to amplifiers, examine the module opamp basic within the Electrical Examples library.

106 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

7.13 Quantizer

Quantizes input according to five parameters: levels, step size, in center, out min, and

out max as shown in Figure 7.1

0

in

0

out

t

t

in_center step_size

levels=5

out_min

out_max

0

in

0

out

t

t

in_center
step_size

levels=4

out_min

out_max

Figure 7.1 Illustration of behavior of Quantizer class in relation to parameter settings.

Declaration

Quantizer quant1(2,.5,0.0,−1,1); // levels=2, step size=0.5, in center=0, out min=-1, out max=1

Quantizer quant2(2,.5,0.5,−1,1);

Quantizer quant3(2,.5,−0.5,0,1);

Quantizer quant4(3,.5,0.0,−1,1);

Quantizer quant5(5,.5,0.0,−1,1);

Quantizer quant6(5,.5,0.0,0,4);

Quantizer quant7(16,.3,0.0,0,15);

Variables

double out; // output of quantizer

Functions

double inp(double in); // returns quantized out for given in

double inp(double in, double clk); // returns quantized out for given in on rising edge of clk

Example of Usage

#include "com_blocks.h"

7.13. QUANTIZER 107

main()

{
double Ts=1;

Quantizer quant1(2,.5,0.0,−1,1);

Quantizer quant2(2,.5,0.5,−1,1);

Quantizer quant3(2,.5,−0.5,0,1);

Quantizer quant4(3,.5,0.0,−1,1);

Quantizer quant5(5,.5,0.0,−1,1); 10

Quantizer quant6(5,.5,0.0,0,4);

Quantizer quant7(16,.3,0.0,0,15);

Vco vco("fc + Kv*x","Ts,fc,Kv",Ts,1/150.0,1.0);

Probe probe1("test.tr0");

double in;

int i;

in = −2.0;

for (i = 0; i < 4000; i++)

{ 20

// generate input signal

if (i % 2000 < 1000)

in += .004;

else

in −= .004;

// clockless quantizer examples

quant1.inp(in);

quant2.inp(in);

quant3.inp(in); 30

quant4.inp(in);

quant5.inp(in);

quant6.inp(in);

// clocked quantizer examples

vco.inp(0.0);

quant7.inp(in,vco.out);

// save signals to file

probe1.inp(in,"in"); 40

probe1.inp(vco.out,"clk");

probe1.inp(quant1.out,"quant1");

probe1.inp(quant2.out,"quant2");

108 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

probe1.inp(quant3.out,"quant3");

probe1.inp(quant4.out,"quant4");

probe1.inp(quant5.out,"quant5");

probe1.inp(quant6.out,"quant6");

probe1.inp(quant7.out,"quant7");

}
} 50

0 500 1000 1500 2000 2500 3000 3500 4000
−2

−1

0

1

2

in
,q

ua
nt

1

0 500 1000 1500 2000 2500 3000 3500 4000
−2

−1

0

1

2

in
,q

ua
nt

2

0 500 1000 1500 2000 2500 3000 3500 4000
−2

−1

0

1

2

in
,q

ua
nt

3

TIME

Figure 7.2 Plot of quant1, quant2, and quant3 from example simulation.

7.13. QUANTIZER 109

0 500 1000 1500 2000 2500 3000 3500 4000
−2

−1

0

1

2

in
,q

ua
nt

4

0 500 1000 1500 2000 2500 3000 3500 4000
−2

−1

0

1

2

in
,q

ua
nt

5

0 500 1000 1500 2000 2500 3000 3500 4000
−2

0

2

4

in
,q

ua
nt

6

TIME

Figure 7.3 Plot of quant4, quant5, and quant6 from example simulation.

0 500 1000 1500 2000 2500 3000 3500 4000
−2

−1

0

1

2

in

0 500 1000 1500 2000 2500 3000 3500 4000
−1

−0.5

0

0.5

1

cl
k

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

qu
an

t7

TIME

Figure 7.4 Plot of quant7 and associated signals from example simulation.

110 CHAPTER 7. GENERAL PURPOSE CPPSIM CLASSES

Chapter 8

CppSim Classes for PLL/DLL

Simulation

These classes are used in the same manner as the general purpose ones described in the

previous chapter, but are specialized for PLL/DLL simulation in that they implement the

area conservation approach for digital signal transitions that is described in the paper

Perrott, M.H., “Fast and Accurate Behavioral Simulation of

Fractional-N Frequency Synthesizers and other PLL/DLL Circuits,”

Design Automation Conference, June, 2002

An expanded version of the above paper is included in the CppSim package — the included

version more explicitly relates the described techniques to the classes provided in this library.

111

112 CHAPTER 8. CPPSIM CLASSES FOR PLL/DLL SIMULATION

8.1 SigGen

Produces a waveform of a specified frequency that corresponds to one of four different wave-

form types:

• “square”: a square wave (alternating between 1 and -1),

• “sine”: a sine wave (amplitude 1, DC offset 0),

• “prbs”: a prbs data sequence (alternating between 1 and -1),

• “impulse”: an impulse data sequence.

Declaration

double Ts=1e−9; // simulation sample period

SigGen siggen1("square",1.0e6,Ts); //square wave of frequency 1 MHz

SigGen siggen2("sine",1.0e6,Ts); // sine wave of frequency 1 MHz

SigGen siggen3("prbs",1.0e6,Ts); // prbs sequence of period 1/(1 MHz), data chosen randomly

List list1;

list1.load("list1.dat"); // load data sequence from file, which must have values of either 1 or -1

SigGen siggen4("prbs",1.0e6,Ts,list1); // prbs sequence of period 1/(1 MHz), data repeats through list1

SigGen siggen4("prbs",1.0e6,Ts,list1,5); // prbs sequence of period 1/(1 MHz),

// data repeats through list1, start with 5th entry in list

SigGen siggen5("impulse",1.0e6,Ts); // impulse sequence of period 1/(1 MHz), data chosen randomly 10

SigGen siggen6("impulse",1.0e6,Ts,list1); // impulse sequence of period 1/(1 MHz), data repeats through list1

SigGen siggen6("impulse",1.0e6,Ts,list1,3); // impulse sequence of period 1/(1 MHz),

// data repeats through list1, start with 3rd entry in list

Redefinition (this is rarely required)

// Declaration

SigGen siggen1("square",1.0e6,Ts);

// Redefine

siggen1.set("sine",1.0e6,Ts);

// Redefine again

siggen1.set("prbs",1.0e6,Ts);

Variables

double out; // waveform output

double phase; // normalized phase of waveform (ramps between 0.0 and 1.0)

double square; // square wave (clk) that output is derived from

8.1. SIGGEN 113

Functions

double inp(double in); // return waveform output, input specifies phase offset

double reset(); // reset waveform (useful when SigGen initialized with a List)

Example of Usage

#include "com_blocks.h"

main()

{
int i;

double Ts,freq;

Ts = 1e−9;

freq = 1e6;

Probe probe1("test.tr0",Ts); 10

SigGen sine1("sine",freq,Ts);

SigGen sine2("sine",freq,Ts);

List list1;

list1.inp(1);

list1.inp(−1);

list1.inp(−1);

SigGen prbs1("prbs",freq,Ts,list1,2); // sequence repeats through value 1, -1, -1; starts with entry 2 of list

SigGen prbs2("prbs",freq,Ts); // sequence randomly takes on values of 1 or -1

Rand rand1("gauss");

20

for (i = 0; i < 10000; i++)

{
if (i == 5000) // reset sine1 at i = 5000

sine1.reset();

// note: phase shifts specified at input are lowpassed filtered by discrete-time filter

// freq∗Ts/(1 - (1-freq∗Ts)∗z^-1)
sine1.inp(0.0); // sine wave with 0 radian phase shift

sine2.inp(0.25); // sine wave with 1/4∗(2∗pi) radian phase shift (i.e. cosine wave)

prbs1.inp(0.0); // 1, -1, -1 sequence with 0 degree phase shift 30

prbs2.inp(0.0001∗rand1.inp()); // prbs sequence with random phase shift (mean 0, var (.0001∗2∗pi)^2)

probe1.inp(sine1.out,"sine1"); // save sine wave

probe1.inp(sine2.out,"sine2"); // save cosine wave

probe1.inp(prbs1.out,"wave"); // save 1, -1, -1 waveform

probe1.inp(prbs2.out,"prbs"); // save prbs waveform

114 CHAPTER 8. CPPSIM CLASSES FOR PLL/DLL SIMULATION

}
}

8.2. VCO 115

8.2 Vco

Voltage controlled oscillator. Output is a square wave that alternates between -1 and 1. At

edges, value of square wave is between -1 and 1 according to the time occurance of the edge

within the sample period.

Declaration

Vco vco("1.84e9 + 30e6*x","Ts",Ts); // center frequency 1.84 GHz, gain 30 MHz/V,

// simulation sample period of Ts

Vco vco2("fc + Kv*x","fc,Kv,Ts",1.84e9,30e6,Ts); // center freqency fc, gain of Kv

Vco vco3("fc + Kv*x + Kv2*x^2 + Kv3*x^(1/2)","fc,Kv,Kv2,Kv3,Ts",1.84e9,30e6,5e6,1e6,Ts);

// Nonlinear VCO characteristic specified by a polynomial

Vco vco4("fc + Kv*x","fc,Kv,Ts,Max,Min",1.84e9,30e6,Ts,2e9,1.7e9); // Max frequency 2e9,

// Min frequency 1.7e9

Redefinition (this is rarely required)

// Declaration

Vco vco1("1.84e9 + 30e6*x","Ts",Ts);

// Redefine

vco1.set("fc + Kv*x","fc,Kv,Ts",1.84e9,30e6,Ts);

// Redefine again

vco1.set("fc + Kv*x + Kv2*x^2 + Kv3*x^(1/2)","fc,Kv,Kv2,Kv3,Ts",1.84e9,30e6,5e6,1e6,Ts);

Variables

double out; // square wave alternating between 1 and -1

double phase; // phase wraps so that it varies between 0 and 2pi

Functions

double inp(double in); // input voltage to vco, returns resulting value of out

double inp(double in, int divide val); // vco divided down by divide value, out returned

double inp(double in, double divide val); // divide value can be double or integer

Example of Usage

#include "com_blocks.h"

main()

{
int i;

116 CHAPTER 8. CPPSIM CLASSES FOR PLL/DLL SIMULATION

double Ts;

double in,sig1;

Ts = 1e−9;

Probe probe1("test.tr0",Ts); 10

Vco vco("fc + Kv*x","fc,Kv,Ts",10e6,1e6,Ts);

Vco vco2("fc + Kv*x","fc,Kv,Ts",10e6,1e6,Ts);

for (i = 0; i < 10000; i++)

{
in = (1.0/10000.0)∗i;
vco.inp(in); // frequency will gradually increase since in is a ramp

vco2.inp(in,3); // divide vco output down in frequency by a factor of 3

sig1 = sin(vco.phase); // sine wave output from VCO instead of square wave

20

probe1.inp(vco.out,"square"); // save square wave output

probe1.inp(vco2.out,"square3"); // save square wave output divided by 3

probe1.inp(sig1,"sine"); // save sine wave output

}
}

8.3. DELAY 117

8.3 Delay

Variable delay element for inputs that follow the interpolation convention (i.e. they must

alternate between -1.0 and 1.0, with transition values taking on a value in the range of -1.0

to 1.0 depending on the location of the transition relative to the sample period). Output

alternates between -1.0 and 1.0, with edge values between -1.0 and 1.0 according to their

actual time position within the sample period.

Declaration

Delay delay1(5.4); // nominal delay of 5.4 simulator time samples when varying delay

Delay delay2(3.6); // fixed delay of 3.6 simulator time samples for fixed delay

Variables

double out; // output of delay element (alternates between 1.0 and -1.0)

Functions

double inp(double in); // input ’in’ signal to delay, keep the delay value fixed

double inp(double in, double delay val); // adjust delay value about

// nominal value according to ’delay val’ signal

Example of Usage

118 CHAPTER 8. CPPSIM CLASSES FOR PLL/DLL SIMULATION

8.4 Divider

Divides down input square wave (which much alternate between -1 and 1) according to a

specified divide value. Output also alternates between -1 and 1.

Declaration

Divider divider1;

Variables

double out; // output square wave alternating between 1 and -1

Functions

double inp(double in, int divide value); // returns output given specified input and divide value

double inp(double in, double divide value); // divide value can be double or integer valued

Example of Usage

#include "com_blocks.h"

main()

{
int i;

double Ts;

double in,sig1;

Ts = 1e−9;

Probe probe1("test.tr0",Ts); 10

Vco vco("fc + Kv*x","fc,Kv,Ts",10e6,1e6,Ts);

Divider divider;

for (i = 0; i < 10000; i++)

{
in = (1.0/10000.0)∗i;
vco.inp(in); // frequency will gradually increase since in is a ramp

divider.inp(vco.out,10.0); // divide down VCO frequency by a factor of 10

probe1.inp(vco.out,"vco"); // save square wave output of VCO 20

probe1.inp(divider.out,"divide"); // save square wave output of divider

}
}

8.5. LATCH 119

8.5 Latch

Performs latch function with input, clock, set and reset that alternate between -1 and 1.

Declaration

Latch latch1;

Variables

double out; // output is 1 or -1 depending on latch state

Functions

// for all functions, in, clock, set, reset must be -1 or 1, values between -1 and 1 correspond to transitions

double inp(double in, double clk); // returns out based on in and clk

double inp(double in, double clk, double set, double reset); // includes set and reset

void init(double in); // initializes latch to value in (must be -1 or 1)

Example of Usage

#include "com_blocks.h"

main()

{
int i;

double Ts;

double in,sig1;

Ts = 1e−9;

Probe probe1("test.tr0",Ts); 10

Vco vco("fc + Kv*x","fc,Kv,Ts",10e6,1e6,Ts);

Divider divider;

Latch latch1, latch2, latch3, latch4;

for (i = 0; i < 10000; i++)

{
in = (1.0/10000.0)∗i;
vco.inp(in); // frequency will gradually increase since in is a ramp

divider.inp(vco.out,10.0); // divide down VCO frequency by a factor of 10

20

// implement a register with divider output as its input, VCO output as its clock

latch1.inp(divider.out,vco.out); // first latch of register

latch2.inp(latch1.out,−vco.out); // second latch of register; note clk is inverted

120 CHAPTER 8. CPPSIM CLASSES FOR PLL/DLL SIMULATION

// implement a register with divider output as its input, VCO output as its clock

// reset the register according to above register output

latch3.inp(divider.out,vco.out,−1.0,latch2.out); // first latch of register

latch4.inp(latch3.out,−vco.out,−1.0,latch2.out); // second latch of register

probe1.inp(vco.out,"vco"); // save square wave output of VCO 30

probe1.inp(divider.out,"divide"); // save square wave output of divider

probe1.inp(latch2.out,"reg1"); // save output of register 1

probe1.inp(latch4.out,"reg2"); // save output of register 2

}
}

8.6. REG 121

8.6 Reg

Performs register function with input, clock, set and reset that alternate between -1 and 1.

Declaration

Reg reg1;

Variables

double out; // output is 1 or -1 depending on register state

Latch lat1; // first latch in register

Latch lat2; // second latch in register

Functions

// for all functions, in, clock, set, reset must be -1 or 1, values between -1 and 1 correspond to transitions

double inp(double in, double clk); // returns out based on in and clk

double inp(double in, double clk, double set, double reset); // includes set and reset

void init(double in); // initializes both register latches to value in (must be -1 or 1)

Example of Usage

#include "com_blocks.h"

main()

{
int i;

double Ts;

double in,sig1;

Ts = 1e−9;

Probe probe1("test.tr0",Ts); 10

Vco vco("fc + Kv*x","fc,Kv,Ts",10e6,1e6,Ts);

Divider divider;

Reg reg1, reg2;

for (i = 0; i < 10000; i++)

{
in = (1.0/10000.0)∗i;
vco.inp(in); // frequency will gradually increase since in is a ramp

divider.inp(vco.out,10.0); // divide down VCO frequency by a factor of 10

20

// implement a register with divider output as its input, VCO output as its clock

122 CHAPTER 8. CPPSIM CLASSES FOR PLL/DLL SIMULATION

reg1.inp(divider.out,vco.out);

// implement a register with divider output as its input, VCO output as its clock

// reset the register according to above register output

reg2.inp(divider.out,vco.out,−1.0,reg1.out);

probe1.inp(vco.out,"vco"); // save square wave output of VCO

probe1.inp(divider.out,"divide"); // save square wave output of divider

probe1.inp(reg1.out,"reg1"); // save output of register 1 30

probe1.inp(reg2.out,"reg2"); // save output of register 2

probe1.inp(reg1.lat1.out,"lat1"); // save output of lat1 of register 1

probe1.inp(reg2.lat1.out,"lat2"); // save output of lat1 of register 2

}
}

8.7. XOR 123

8.7 Xor

Performs ‘xor’ function with 2 inputs that alternate between -1 and 1.

Declaration

Xor xor1;

Variables

double out; // output is 1 or -1 depending on xor of inputs

Functions

// inputs must be either -1 or 1

// values between -1 and 1 correspond to transitions

double inp(double in0, double in1); // returns out = -in0∗in1; (the xor function)

Example of Usage

#include "com_blocks.h"

main()

{
int i;

double Ts;

double in,sig1;

Ts = 1e−9;

Probe probe1("test.tr0",Ts); 10

Vco vco("fc + Kv*x","fc,Kv,Ts",10e6,1e6,Ts);

Divider divider;

Reg reg1;

Xor xor1, xor2, xor3;

for (i = 0; i < 10000; i++)

{
in = (1.0/10000.0)∗i;
vco.inp(in); // frequency will gradually increase since in is a ramp

divider.inp(vco.out,10.0); // divide down VCO frequency by a factor of 10 20

reg1.inp(divider.out,vco.out); // register divider output with VCO output as clk

xor1.inp(divider.out,reg1.out); // xor divider out and reg1 out

124 CHAPTER 8. CPPSIM CLASSES FOR PLL/DLL SIMULATION

xor2.inp(−divider.out,reg1.out); // xor not(divider out) and reg1 out

xor3.inp(divider.out,−reg1.out); // xor divider out and not(reg1 out)

probe1.inp(vco.out,"vco"); // save square wave output of VCO

probe1.inp(divider.out,"divide"); // save square wave output of divider

probe1.inp(reg1.out,"reg1"); // save output of register 1 30

probe1.inp(xor1.out,"xor1"); // save output of xor1

probe1.inp(−xor2.out,"xor2_not"); // save output of not(xor2)

probe1.inp(xor3.out,"xor3"); // save output of xor3

}
}

8.8. AND 125

8.8 And

Performs ‘and’ function with 2 to 5 inputs that alternate between -1 and 1.

Declaration

And and1;

Variables

double out; // output is 1 or -1 depending on ‘and’ of inputs

Functions

// inputs must be either -1 or 1, values between -1 and 1 correspond to transitions

double inp(double in0, double in1); // returns out = 1 if and(in0,in1)=1, -1 if and(in0,in1)=0

double inp(double in0, double in1, double in2); // three inputs

double inp(double in0, double in1, double in2, double in3); // four inputs

double inp(double in0, double in1, double in2, double in3, double in4); // five inputs

Example of Usage

#include "com_blocks.h"

main()

{
int i;

double Ts;

double in,sig1;

Ts = 1e−9;

Probe probe1("test.tr0",Ts); 10

Vco vco("fc + Kv*x","fc,Kv,Ts",10e6,1e6,Ts);

Divider divider;

Reg reg1;

And and1, and2, and3;

for (i = 0; i < 10000; i++)

{
in = (1.0/10000.0)∗i;
vco.inp(in); // frequency will gradually increase since in is a ramp

divider.inp(vco.out,10.0); // divide down VCO frequency by a factor of 10 20

reg1.inp(divider.out,vco.out); // register divider output with VCO output as clk

126 CHAPTER 8. CPPSIM CLASSES FOR PLL/DLL SIMULATION

and1.inp(divider.out,reg1.out); // ‘and’ divider out, reg1 out

and2.inp(−divider.out,reg1.out); // ‘and’ not(divider out), reg1 out

and3.inp(vco.out,−reg1.out,and1.out,and2.out); // ‘and’ vco out, not(reg1 out), and1 out, and2 out

probe1.inp(vco.out,"vco"); // save square wave output of VCO

probe1.inp(divider.out,"divide"); // save square wave output of divider

probe1.inp(reg1.out,"reg1"); // save output of register 1 30

probe1.inp(and1.out,"and1"); // save output of and1

probe1.inp(−and2.out,"and2_not"); // save output of not(and2)

probe1.inp(and3.out,"and3"); // save output of and3

}
}

8.9. OR 127

8.9 Or

Performs ‘or’ function with 2 to 5 inputs that alternate between -1 and 1.

Declaration

Or or1;

Variables

double out; // output is 1 or -1 depending on ‘or’ of inputs

Functions

// inputs must be either -1 or 1, values between -1 and 1 correspond to transitions

double inp(double in0, double in1); // returns out = 1 if or(in0,in1)=1, -1 if or(in0,in1)=0

double inp(double in0, double in1, double in2); // three inputs

double inp(double in0, double in1, double in2, double in3); // four inputs

double inp(double in0, double in1, double in2, double in3, double in4); // five inputs

Example of Usage

#include "com_blocks.h"

main()

{
int i;

double Ts;

double in,sig1;

Ts = 1e−9;

Probe probe1("test.tr0",Ts); 10

Vco vco("fc + Kv*x","fc,Kv,Ts",10e6,1e6,Ts);

Divider divider;

Reg reg1;

Or or1, or2, or3;

for (i = 0; i < 10000; i++)

{
in = (1.0/10000.0)∗i;
vco.inp(in); // frequency will gradually increase since in is a ramp

divider.inp(vco.out,10.0); // divide down VCO frequency by a factor of 10 20

reg1.inp(divider.out,vco.out); // register divider output with VCO output as clk

128 CHAPTER 8. CPPSIM CLASSES FOR PLL/DLL SIMULATION

or1.inp(divider.out,reg1.out); // ‘or’ divider out, reg1 out

or2.inp(−divider.out,reg1.out); // ‘or’ not(divider out), reg1 out

or3.inp(vco.out,−reg1.out,or1.out,or2.out); // ‘or’ vco out, not(reg1 out), or1 out, or2 out

probe1.inp(vco.out,"vco"); // save square wave output of VCO

probe1.inp(divider.out,"divide"); // save square wave output of divider

probe1.inp(reg1.out,"reg1"); // save output of register 1 30

probe1.inp(or1.out,"or1"); // save output of or1

probe1.inp(−or2.out,"or2_not"); // save output of not(or2)

probe1.inp(or3.out,"or3"); // save output of or3

}
}

8.10. EDGEMEASURE 129

8.10 EdgeMeasure

Measures time between rising edges of its input. Normalized to a sample time equal to one.

The output is zero except at the location of edges.

Declaration

EdgeMeasure edge time1;

Variables

double out; // output is time since last edge if input is rising edge, 0 otherwise

Functions

double inp(double in); // returns out, input must be a square wave alternating between -1 and 1

Example of Usage

#include "com_blocks.h"

main()

{
int i;

double Ts;

double in;

Ts = 1e−9;

Probe probe1("test.tr0",Ts); 10

Vco vco("fc + Kv*x","fc,Kv,Ts",10e6,1e6,Ts);

Divider divider;

EdgeMeasure edge time1,edge time2;

for (i = 0; i < 10000; i++)

{
in = (1.0/10000.0)∗i;
vco.inp(in); // frequency will gradually increase since in is a ramp

divider.inp(vco.out,10.0); // divide down VCO frequency by a factor of 10

20

probe1.inp(vco.out,"vco"); // save square wave output of VCO

probe1.inp(divider.out,"divide"); // save square wave output of divider

probe1.inp(edge time1.inp(vco.out),"vco_time");

// note: a given EdgeMeasure module cannot be used twice in one loop

130 CHAPTER 8. CPPSIM CLASSES FOR PLL/DLL SIMULATION

probe1.inp(edge time2.inp(divider.out),"divide_time");

}
}

Appendix A

Example Simulation Code (Not

Auto-Generated)

This appendix provides four different examples illustrating the ability of the CppSim classes

to quickly and accurately simulate the behavior of PLL systems ranging from frequency

synthesizers to clock and data recovery circuits. These examples are NOT generated from

netlists, but rather are directly implemented in C++ code using the CppSim classes. Al-

though the netlist driven method should be used whenever possible, these examples provide

the user with a straightforward presentation of the structure and issues associated with doing

C++ simulations with the provided classes.

131

132 APPENDIX A. EXAMPLE SIMULATION CODE (NOT AUTO-GENERATED)

A.1 Classical Synthesizer

Figure A.1 illustrates a classical synthesizer, which consists of a phase/frequency detector

(PFD), loop filter, VCO, and frequency divider. The frequency divider value is nominally

held to a constant integer value labeled Nnom , but is stepped in value when a new output

frequency is desired.

PFD Loop
Filter

ref(t) out(t)

Divider

T

T

e(t) v(t)

div(t)

VCO

N[k] = Nnom

average

Figure A.1 A classical synthesizer.

A key decision when designing the synthesizer is the choice of PFD structure. Two main

styles are available — the Tristate PFD and the XOR-based PFD. The Tristate PFD is

the most popular of the two, and allows charge pump noise to be minimized due to the

small pulse widths it achieves. The XOR-based PFD has advantages for Σ-Δ frequency

synthesizers since it avoids small pulses, and thereby achieves better linearity. For this

example, we will assume the Tristate PFD shown in Figure A.2 is used.

Example C++ code to achieve simulation of the above system is shown below.

#include "com_blocks.h"

main()

{
double Ts = 1/200e6;

Probe probe("test.tr0",Ts);

Vco vco("fc + Kv*x","fc,Kv,Ts",1.84e9,30e6,Ts);

SigGen ref clk("square",20e6,Ts);

Reg reg1,reg2;

And and1; 10

Filter rc filt("1.0","1 + 1/(2*pi*fp)*s","fp,Ts",127.2e3,Ts);

Filter int filt("2*pi*fp/10","s","fp,Ts",127.2e3,Ts);

double chp out,vco in;

A.1. CLASSICAL SYNTHESIZER 133

D

Q

Q

D

Q

Q

R

R

ref_clk.out

vco.out

ref_clk.out

vco.out

1

1

reg1.out

reg2.out

reg1.out

reg2.out

1

-1
1

-1

1

-1
1

-1

reg1

reg2

and1

and1.out

-and1.out

Figure A.2 Tristate PFD.

int i,N;

N = 90;

for (i = 0; i < 200000; i++)

{
// step desired VCO frequency by 1.0∗Kv at sample 160000

if (i == 160000) 20

N += 1;

// reference oscillator

ref clk.inp(0.0);

// PFD

reg1.inp(1.0,vco.out,−1.0,and1.out);

reg2.inp(1.0,ref clk.out,−1.0,and1.out);

and1.inp(reg1.out,reg2.out);

30

// Charge Pump

chp out = (reg2.out−reg1.out)∗.1989∗PI;

// Loop Filter

rc filt.inp(chp out);

int filt.inp(chp out);

134 APPENDIX A. EXAMPLE SIMULATION CODE (NOT AUTO-GENERATED)

// VCO and divider

vco in = rc filt.out+int filt.out;

vco.inp(vco in,N); 40

probe.inp(N,"N");

probe.inp(vco in,"vco");

}
}

Inspection of the above code reveals that is quite straightforward to represent the system

using the CppSim classes.

Simulated results are shown in Figure A.3. The initial part of the response corresponds

to the PLL cycle slipping before it becomes locked in frequency. The right portion of the

plot illustrates the step response of the PLL for the case where it remains frequency locked.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

vc
o

TIME

Settling Response of Classical Frequency Synthesizer (Tristate PFD)

Figure A.3 Simulation plot for classical synthesizer (Tristate PFD).

A.2. Σ-Δ SYNTHESIZER 135

A.2 Σ-Δ Synthesizer

Figure A.4 illustrates a Σ-Δ frequency synthesizer. In this case, rather than remaining

constant, the divide value is dithered according to the output of a Σ-Δ modulator.

PFD Charge
Pump

Nsd[m]

ref(t) out(t)e(t)

div(t)

Σ−Δ
Modulator

v(t)

N[m]

Loop
Filter

Divider

VCO

Figure A.4 A Σ-Δ frequency synthesizer.

Example C++ code to achieve simulation of the Σ-Δ synthesizer is shown below. As in

the case of the classical synthesizer, the resulting code is compact and straightforward to

implement. Simulated results are shown in Figure A.5.

#include "com_blocks.h"

main()

{
double Ts = 1/200e6;

SdMbitMod sd mod("1 - 3z^-1 + 3z^-2 - 1z^-3");

Probe probe("test.tr0",Ts);

Vco vco("fc + Kv*x","fc,Kv,Ts",1.84e9,30e6,Ts);

SigGen ref clk("square",20e6,Ts);

Reg reg1,reg2; 10

And and1;

Filter rc filt("1.0","1 + 1/(2*pi*fp)*s","fp,Ts",127.2e3,Ts);

Filter int filt("2*pi*fp/10","s","fp,Ts",127.2e3,Ts);

Edge vco edge;

double chp out,vco in,in;

int i;

in = 90.3;

for (i = 0; i < 100000; i++)

{ 20

136 APPENDIX A. EXAMPLE SIMULATION CODE (NOT AUTO-GENERATED)

// step desired VCO frequency by .1∗Kv at sample 80000

if (i == 80000)

in += .1;

// SD modulator

if (vco edge.inp(vco.out))

sd mod.inp(in);

// reference oscillator

ref clk.inp(0.0);

30

// PFD

reg1.inp(1.0,vco.out,−1.0,and1.out);

reg2.inp(1.0,ref clk.out,−1.0,and1.out);

and1.inp(reg1.out,reg2.out);

// Charge Pump

chp out = (reg2.out−reg1.out)∗.1989∗PI;

// Loop Filter

rc filt.inp(chp out); 40

int filt.inp(chp out);

// VCO and divider

vco in = rc filt.out+int filt.out;

vco.inp(vco in,sd mod.out);

probe.inp(sd mod.out,"sd");

probe.inp(int filt.out,"int");

probe.inp(chp out,"chp");

probe.inp(vco in,"vco"); 50

probe.inp(reg1.out,"reg1");

probe.inp(reg2.out,"reg2");

probe.inp(vco.out,"out");

probe.inp(vco.phase,"phase");

probe.inp(ref clk.out,"ref");

}
}

A.3. LINEAR CDR 137

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

vc
o

TIME

Settling Response of �−� Frequency Synthesizer (Tristate PFD)

Figure A.5 Simulation plot for Σ-Δ synthesizer (Tristate PFD).

A.3 Linear CDR

The CppSim classes also allow straightforward simulation of clock and data recovery (CDR)

circuits. Figure A.6 illustrates a general CDR architecture that uses a phase-locked loop

to lock the phase and frequency of a VCO to that of the input data. As with frequency

synthesizers, a critical component in the design is the phase detector structure that is cho-

sen. Common choices for these detectors are the Hogge topology, which leads to linear CDR

dynamics, or the Bang-bang topology, which leads to nonlinear behavior. The Hogge topol-

ogy is often chosen for systems that have stringent requirements on the transfer function

response of the CDR to input jitter from the data sequence. The Bang-bang topology offers

superior phase acquisition speed at the expense of having nonlinear dependence on the input

jitter.

PD Charge
Pump

Clke(t) v(t)Loop
Filter

VCO

Retimed
Data

Data In

Figure A.6 A PLL-based clock and data recovery circuit.

138 APPENDIX A. EXAMPLE SIMULATION CODE (NOT AUTO-GENERATED)

In this section, we will examine the simulation of a CDR that has linear dynamics by

virtue of using a Hogge phase detector. The Hogge structure is illustrated in Figure A.7.

D Q D Q

Clk

Clk

Data In

Data In

Retimed
Data

Retimed Data

Reg Latch

Error

Error

A

A

B

B

C

C

Figure A.7 A linear phase detector (Hogge topology).

C++ simulation code for a linear CDR system is given below. As with the synthesizer

examples, one can see that the CppSim classes allow straightforward implementation of this

system in code.

#include "com_blocks.h"

main()

{
double Ts = 1/15e9;

Probe probe("test.tr0",Ts);

Vco vco("fc + Kv*x","fc,Kv,Ts",2.5e9,30e6,Ts);

SigGen prbs data("prbs",2.502e9,Ts);

Reg reg1;

Latch latch1; 10

Xor xor1,xor2;

Filter int filt("1","C*s","C,Ts",2e−9,Ts);

Filter rc filt("R","1 + 1/(2*pi*fp)*s","R,fp,Ts",1.07e3,40e6,Ts);

EdgeMeasure vco period,in period;

Rand randg("gauss");

double chp out,vco in,pd out,in;

double N dBc,f off,noise var,Kv;

int i;

/∗ VCO noise ∗/ 20

A.3. LINEAR CDR 139

N dBc = −100; // -100 dBc/Hz at 1 MHz offset

f off = 1e6;

Kv = 30e6;

noise var = pow(10,N dBc/10.0)∗pow(f off/Kv,2);

for (i = 0; i < 500000; i++)

{
// Input PRBS data - set jitter to zero

in = prbs data.inp(0.0); 30

// Hogge phase detector

reg1.inp(in,vco.out);

latch1.inp(reg1.out,vco.out);

xor1.inp(in,reg1.out);

xor2.inp(reg1.out,latch1.out);

pd out = xor1.out−xor2.out;

// Charge Pump

chp out = 150e−6∗pd out; 40

// Loop filter

vco in = int filt.inp(chp out) + rc filt.inp(chp out);

vco in += sqrt(noise var/Ts)∗randg.inp(); // add VCO noise

// VCO

vco.inp(vco in);

// Save signals to file

probe.inp(vco period.inp(vco.out),"vco_period"); 50

probe.inp(in period.inp(prbs data.square),"in_period");

probe.inp(vco in,"vco");

probe.inp(int filt.out,"integ");

probe.inp(pd out,"pd_out");

}
}

Simulated results generated by the above simulation code are shown in Figure A.8. The

plot reveals an exponential decay of the phase error over time (or, equivalently, over VCO

cycle number). For reference, the Matlab code used to generate this plot is given below (this

code is contained in the CppSim/MatlabCode directory).

140 APPENDIX A. EXAMPLE SIMULATION CODE (NOT AUTO-GENERATED)

x = loadsig('test.tr0');

raw period vco = evalsig(x,'vco_period');

raw period in = evalsig(x,'in_period');

%phase = extract phase(raw period vco);

[phase,avg period] = extract phase(raw period vco,raw period in);

%phase = phase-1/avg period;

phase = phase + .5; 10

% phase = phase(30000:length(phase));

plot(phase,'-k');

grid on;

xlabel('VCO rising edge number');

ylabel('Instantaneous Jitter (U.I.)');

title str = sprintf('Instantaneous Jitter of VCO in CDR: \n Steady-state RMS jitter = %5.4f mUI',1e3∗std(phase
title(title str);

%axis([-1e3 5e4 -.2 .05])

20

A.4. BANG-BANG CDR 141

0 1 2 3 4 5 6 7 8 9

x 10
4

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

VCO rising edge number

In
st

an
ta

ne
ou

s
P

ha
se

 E
rr

or
 (

U
.I.

)

Instantaneous Jitter of VCO in CDR:
 Steadystate RMS jitter = 3.0756 mUI

Figure A.8 Simulation plot for CDR (linear phase detector).

A.4 Bang-bang CDR

This section investigates the simulation of a CDR that uses a Bang-bang detector rather

than a Hogge detector as illustrated in Figure A.9. The code corresponding to this system is

shown below, and the simulated phase error produced by the code is shown in Figure A.10.

As with the previous systems, the simulation code is seen to be straightforward to implement.

The simulated phase error plot is seen to quickly settle to zero phase error in a non-linear

manner, which is in contrast to exponential response of the linear CDR.

#include "com_blocks.h"

main()

{
double Ts = 1/15e9;

Probe probe("test.tr0",Ts);

Vco vco("fc + Kv*x","fc,Kv,Ts",2.5e9,50e6,Ts);

SigGen prbs data("prbs",2.502e9,Ts);

Reg reg1,reg2,reg3;

Latch latch1; 10

142 APPENDIX A. EXAMPLE SIMULATION CODE (NOT AUTO-GENERATED)

Xor xor1,xor2;

Filter int filt("2*pi*40e9","s","Ts",Ts);

EdgeMeasure vco period,in period;

Rand randg("gauss");

double chp out,vco in,pd out,in;

double N dBc,f off,noise var,Kv;

int i;

/∗ VCO noise ∗/
N dBc = −90; // -90 dBc/Hz at 1 MHz offset 20

f off = 1e6;

Kv = 50e6;

noise var = pow(10,N dBc/10.0)∗pow(f off/Kv,2);

for (i = 0; i < 300000; i++)

{
// Input PRBS data

in = prbs data.inp(0.0); // set jitter to zero

30

// Bang-bang phase detector

reg1.inp(in,vco.out);

reg2.inp(reg1.out,vco.out);

reg3.inp(in,−vco.out);

latch1.inp(reg3.out,−vco.out);

xor1.inp(reg1.out,latch1.out);

xor2.inp(reg2.out,latch1.out);

pd out = xor1.out−xor2.out;

// Charge Pump 40

chp out = 1e−6∗pd out;

// Loop filter

vco in = int filt.inp(chp out) + chp out∗125.0e3;
vco in += sqrt(noise var/Ts)∗randg.inp(); // add VCO noise

// VCO

vco.inp(vco in);

// Save signals to file 50

probe.inp(vco period.inp(vco.out),"vco_period");

A.4. BANG-BANG CDR 143

probe.inp(in period.inp(prbs data.square),"in_period");

probe.inp(vco in,"vco");

probe.inp(int filt.out,"integ");

probe.inp(pd out,"pd_out");

}
}

D Q D Q

Clk

Clk

Data In

Retimed Data
Reg Latch

D Q D Q

Clk Error

Data In

Retimed Data

Reg Reg

Error

A

A

B
B

0

-1

1

Figure A.9 A bang-bang phase detector.

144 APPENDIX A. EXAMPLE SIMULATION CODE (NOT AUTO-GENERATED)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.2

0.15

0.1

0.05

0

0.05

VCO rising edge number

In
st

an
ta

ne
ou

s
P

ha
se

 E
rr

or
 (

U
.I.

)

Instantaneous Jitter of VCO in CDR:
 Steadystate RMS jitter = 3.4598 mUI

Figure A.10 Simulation plot for CDR (bang-bang phase detector).

Appendix B

Hspice Toolbox for Matlab

Documentation and code written by Michael H. Perrott
Copyright c© 1999 by Silicon Laboratories, Inc.

The Hspice toolbox for Matlab is a collection of Matlab routines that allow you to

manipulate and view signals generated by Hspice simulations. The primary routine is a mex

program called loadsig.mexsol that reads binary output files generated by Hspice transient,

DC, and AC sweeps into Matlab. The remaining routines are used to extract particular

signals and view them.

We will begin this document by explaining how to include the Hspice toolbox in your

Matlab session. A list of each of the current functions will then be presented. Finally, we

will provide examples of using these routines to view and postprocess signals from Hspice

output files.

B.1 Setup

To use the Hspice toolbox, simply place the included files into a directory of your choice,

and then add that directory to your Matlab path. For example, inclusion of the path

’/home/username/CppSim/HspiceToolbox’ in Matlab can be done by adding the line

addpath(’/home/username/Cppsim/HspiceToolbox’)

to the file startup.m located in your home directory. In addition, you can specify the plot

background to be black (similar to the look of Awaves) by adding another line to startup.m:

colordef none;

145

146 APPENDIX B. HSPICE TOOLBOX FOR MATLAB

Once you’ve made the above changes to startup.m, start Matlab as you normally would.

Matlab will automatically read startup.m from your home directory and execute its com-

mands.

B.2 List of Functions

The following functions are currently included in the Hspice toolbox:

• x = loadsig(’hspice_output_filename’);

– Returns a Matlab structure into variable x that includes all of the signals that

are present in the Hspice binary output file, hspice_output_filename.

• lssig(x)

– Lists all of the Hspice signal names present in the structure x.

• y = evalsig(x,’nodename’);

– Pulls out the signal nodename from the structure x and places into variable y.

The string nodename can be an expression involving several Hspice signals. If you

only performed one sweep in the simulation (as is common), then y will contain

one column. If you performed several sweeps, y will contain several columns

that correspond to the data for each sweep. If you have set the global Matlab

variable sweep to a nonzero number, however, then y will contain only one column

corresponding to the value of sweep. If sweep equals zero, all the sweep columns

are included in y.

• plotsig(x,’plot_expression’,’optional_plotspec’)

– Plots signals from the structure x according to the expression given in plot_expression.

The string optional_plotspec is used to create logscale plots; it can be specified

as logx, logy, or logxy. The string plot_expression specifies the nodenames,

and corresponding mathematical operations, that you would like to view. In this

expression, commas delimit curves to be overlayed and semicolons delimit sepa-

rate subplots on the same figure. All numeric node names should be prepended

by ‘@’ to distinguish them from constants. Some examples of using plotsig are:

B.3. EXAMPLES 147

∗ plotsig(x,’v1,v2;v3’): overlays v1 and v2 on the same subplot, and plots

v3 on a separate subplot.

∗ plotsig(x,’(v1+v2)^2; log(abs(v3))’): plots the listed expressions on

separate subplots.

∗ plotsig(x,’db(v1); ph(v1)’,’logx’): plots the magnitude (in dB) and

phase (in degrees) of v1 on a semilogx axis.

∗ plotsig(x,’v1+@2+3’): plots the addition of node v1, node 2, and the con-

stant 3.

∗ plotsig(x,’integ(TIME,v1); avg(TIME,v2)’): plots the integral of v1

and average of v2 on separate subplots.

• xlima

– Sets the x-limits of all subplots in a figure. Three options are possible:

∗ xlima: sets all subplots to the same x-axis as the last subplot that was zoomed

into,

∗ xlima([xs xe]): sets all subplots to the x-axis limits specified,

∗ xlima(’auto’): resets all subplots back to autoscaling.

– Note: ylima and xylima functions are also provided. See comments in ylima.m

and xylima.m for proper usage.

• eyesig(x,period,start_off,’nodename’)

– Creates an eye diagram for nodename contained in x with the specified period.

All data samples prior to start_off are ignored when creating the diagram (useful

for removing the influence of transient effects from the eye diagram). The string

nodename can be an expression involving several variables.

B.3 Examples

Viewing Signals

Use the Matlab command cd to go to a directory containing a binary transient, DC, or AC

sweep file generated from Hspice. We will assume a filename of test.tr0, and now list a

series of Matlab commands that will be used to display nodes q and qb in that file.

148 APPENDIX B. HSPICE TOOLBOX FOR MATLAB

• x = loadsig(’test.tr0’); %% loads Hspice signals into x

• lssig(x) %% verify that nodes q and qb are present

• plotsig(x,’q; qb; q-qb’) %% plot expressions of interest

Doing Postprocessing in Matlab

Use the Matlab command cd to go to a directory containing a binary transient, DC, or AC

sweep file generated from Hspice. We will assume a filename of test.tr0, and now list a

series of Matlab commands that will be used to postprocess nodes q and qb in that file.

• x = loadsig(’test.tr0’); %% loads Hspice signals into x

• lssig(x) %% verify that nodes q and qb are present

• t = evalsig(x,’TIME’); %% loads time samples into Matlab variable t

• q = evalsig(x,’q’); %% loads signal q into Matlab variable q

• qb = evalsig(x,’qb’); %% loads signal qb into Matlab variable qb

• qdiff = q-qb; %% perform expressions in Matlab

• plot(t,q,t,qb,t,qdiff) %% plot variables using Matlab plot command

