Design Issues: high speed, low power
Divide-by-2 Circuit (Johnson Counter)

- Achieves frequency division by clocking two latches (i.e., a register) in negative feedback
- Latches may be implemented in various ways according to speed/power requirements
Divide-by-2 Using a TSPC register

- **Advantages**
 - Reasonably fast, compact size
 - No static power dissipation, differential clock not required

- **Disadvantages**
 - Slowed down by stacked PMOS, signals go through three gates per cycle
 - Requires full swing input clock signal
Divide-by-2 Using Razavi’s Topology

- Faster topology than TSPC approach
Explanation of Razavi Divider Operation (Part 1)

- **Left latch:**
 - Clock drives current from PMOS devices of a given latch onto the NMOS cross-coupled pair
 - Latch output voltage rises asymmetrically according to voltage setting on gates of outside NMOS devices

- **Right latch:**
 - Outside NMOS devices discharge the latch output voltage as the left latch output voltage rises
Explanation of Razavi Divider Operation (Part 2)

- **Right latch:**
 - Clock drives current from PMOS devices of a given latch onto the NMOS cross-coupled pair
 - Latch output voltage rises asymmetrically according to voltage setting on gates of outside NMOS devices

- **Left latch:**
 - Outside NMOS devices discharge the latch output voltage as the left latch output voltage rises
Explanation of Razavi Divider Operation (Part 3)

- Process starts over again with current being driven into left latch
 - Voltage polarity at the output of the latch has now flipped
Advantages and Disadvantages of Razavi Topology

- **Advantages**
 - Fast – no stacked PMOS, signal goes through only two gates per cycle

- **Disadvantages**
 - Static power
 - Full swing, differential input clock signal required

- **Note:** quarter period duty cycle can be turned into fifty percent duty cycle with OR gates after the divider
 - See my thesis at http://www-mtl.mit.edu/~perrott
Divide-by-2 Using Wang Topology

- Claims to be faster than Razavi topology
 - Chief difference is addition of NMOS clock devices and different scaling of upper PMOS devices
- See HongMo Wang, “A 1.8 V 3 mW 16.8 GHz Frequency Divider in 0.25μm CMOS”, ISSCC 2000, pp 196-197
Explanation of Wang Topology Operation (Part 1)

- **Left latch**
 - Current driven into latch and output voltage responds similar to Razavi architecture

- **Right latch**
 - Different than Razavi architecture in that latch output voltage is *not* discharged due to presence of extra NMOS
Explanation of Wang Topology Operation (Part 2)

- Same process repeats on the right side
 - The left side maintains its voltages due to presence of NMOS device
Advantages and Disadvantages of Wang Topology

- **Advantages**
 - Fast – no stacked PMOS, signal goes through only two gates per cycle

- **Disadvantages**
 - Static power
 - Full swing, differential input clock signal required
Fastest structure uses resistors for load
Explanation of SCL Topology Operation (Part 1)

- **Left latch**
 - Current directed into differential amp portion of latch
 - Latch output follows input from right latch

- **Right latch**
 - Current directed into cross-coupled pair portion of latch
 - Latch output is held
Explanation of SCL Topology Operation (Part 2)

- **Left latch**
 - Current is directed into cross-coupled pair
 - Latch output voltage retained

- **Right latch**
 - Current is directed into differential amp
 - Latch output voltage follows input from left latch
Same process repeats on left side
- Voltage polarity is now flipped
Advantages and Disadvantages of SCL Topology

Advantages
- Very fast – no PMOS at all, signal goes through only two gates per cycle
- Smaller input swing for input clock than previous approaches
 - Much easier to satisfy at high frequencies

Disadvantages
- Static power
- Differential signals required
- Large area compared to previous approaches
- Biasing sources required

Note: additional speedup can be obtained by adding using inductor peaking as described for amplifiers in Lecture 6
Creating Higher Divide Values (Synchronous Approach)

- Cascades toggle registers and logic to perform division
 - Advantage: low jitter (explained shortly)
 - Problems: high power (all registers run at high frequency), high loading on clock (IN signal drives all registers)
Creating Higher Divide Values (Asynchronous Approach)

- Higher division achieved by simply cascading divide-by-2 stages
- Advantages over synchronous approach
 - Lower power: each stage runs at a lower frequency, allowing power to be correspondingly reduced
 - Less loading of input: IN signal only drives first stage
- Disadvantage: jitter is larger
Jitter in Asynchronous Designs

- Each logic stage adds jitter to its output
 - Jitter accumulates as it passes through more and more gates
Jitter in Synchronous Designs

- Transition time of register output is set by the clock, not the incoming data input
 - Synchronous circuits have jitter performance corresponding to their clock
 - Jitter does not accumulate as signal travels through synchronous stages
High Speed, Low Power Asynchronous Dividers

- Highest speed achieved with differential SCL registers
 - Static power consumption not an issue for high speed sections, but wasteful in low speed sections
- Lower power achieved by using full swing logic for low speed sections
Differential to Full Swing Converter

- Use an opamp style circuit to translate differential input voltage to a single-ended output
- Use an inverter to amplify the single-ended output to full swing level
Issue: Architecture Very Sensitive to DC Offset

- Opamp style circuit has very high DC gain from V_{in} to node Y
- DC offset will cause signal to rise above or fall below inverter threshold
 - Output signal rails rather than pulsing
Use Resistor Feedback to Reduce DC Gain

- **Idea:** create transresistance amplifier rather than voltage amplifier out of inverter by using feedback resistor
 - Presents a low impedance to node Y
 - Current from opamp style circuit is shunted through resistor
 - DC offset at input shifts output waveform slightly, but not node Y (to first order)

- **Circuit is robust against DC offset!**
Alternate Implementation of Inverter Feedback

- Nonlinear feedback using MOS devices can be used in place of resistor
 - Smaller area than resistor implementation
- Analysis done by examining impact of feedback when output is high or low
Impact of Nonlinear Feedback When Output is High

- Corresponds to case where current flows into node Y
 - NMOS device acts like source follower
 - PMOS device is shut off
- Output is approximately set to V_{gs} of NMOS feedback device away from inverter threshold voltage
 - Inverter input is set to a value that yields that output voltage
 - High DC gain of inverter insures it is close to inverter threshold
Impact of Nonlinear Feedback When Output is Low

- Corresponds to case where current flows out of node Y
 - NMOS device is shut off
 - PMOS device acts like source follower
- Output is approximately set to Vgs of PMOS feedback device away from inverter threshold voltage
 - Inverter input is set to a value that yields that output voltage
 - High DC gain of inverter insures it is close to inverter threshold
Variable Frequency Division

- Classical design partitions variable divider into two sections
 - Asynchronous section (called a prescaler) is fast
 - Often supports a limited range of divide values
 - Synchronous section has no jitter accumulation and a wide range of divide values
 - Control logic coordinates sections to produce a wide range of divide values
Dual Modulus Prescalers

- Dual modulus design supports two divide values
 - In this case, divide-by-8 or 9 according to CON signal
- One cycle resolution achieved with front-end “2/3” divider
Divide-by-2/3 Design (Classical Approach)

- Normal mode of operation: $\text{CON}^* = 0 \Rightarrow Y = 0$
 - Register B acts as divide-by-2 circuit
- Divide-by-3 operation: $\text{CON}^* = 1 \Rightarrow Y = 1$
 - Reg B remains high for an extra cycle
 - Causes Y to be set back to 0 \Rightarrow Reg B toggles again
 - CON^* must be set back to 0 before Reg B toggles to prevent extra pulses from being swallowed
Control Qualifier Design (Classical Approach)

- Must align CON signal to first “2/3” divider stage
 - CON signal is based on logic clocked by divider output
 - There will be skew between “2/3” divider timing and CON
- Classical approach cleverly utilizes outputs from each section to “gate” the CON signal to “2/3” divider
Multi-Modulus Prescalers

- Cascaded 2/3 sections achieves a range of 2^n to $2^{n+1}-1$
 - Above example is 8/.../15 divider
- Asynchronous design allows high speed and low power operation to be achieved
 - Only negative is jitter accumulation
A More Modular Design

- Perform control qualification by synchronizing within each stage before passing to previous one
 - Compare to previous slide in which all outputs required for qualification of first 2/3 stage
Implementation of 2/3 Sections in Modular Approach

- Approach has similar complexity to classical design
 - Consists of two registers with accompanying logic gates
- Cleverly utilizes “gating” register to pass synchronized control qualifying signal to the previous stage
Implementation of Latch and And Gate in 2/3 Section

- Combine AND gate and latch for faster speed and lower power dissipation
- Note that all primitives in 2/3 Section on previous slide consist of this combination or just a straight latch
Can We Go Even Faster?
Speed Limitations of Divide-by-2 Circuit

- Maximum speed limited only by propagation delay \((\text{delay}_1, \text{delay}_2)\) of latches and setup time of latches \((T_s)\)

\[
\frac{T_{IN}}{2} > \text{delay}_1 + T_s, \quad \frac{T_{IN}}{2} > \text{delay}_2 + T_s
\]
- Maximum speed limited by latch plus gating logic
 \[\frac{T_{IN}}{2} > \text{delay}_2 + \text{delay}_3 + T_s \]
- Gated divide-by-2/3 fundamentally slower than divide-by-2
Divide-by-2/3 Using Phase Shifting

- Achieves speed of divide-by-2 circuits!
 - MUX logic runs at half the input clock speed
Implementation Challenges to Phase Shifting

- Avoiding glitches
 - By assumption of sine wave characteristics
 - By make-before-break switching
 - Through re-timed multiplexor
 - Krishnapura et. al, “A 5.3 GHz Programmable Divider for HiPerLan in 0.25μm CMOS”, JSSC, July 2000

- Avoiding jitter due to mismatch in phases
 - Through calibration
Further Reduction of MUX Operating Frequency

- Leverage the fact that divide-by-2 circuit has 4 phases
 - Create divide-by-4/5 by cascading two divide-by-2 circuits
 - Note that single cycle pulse swallowing still achieved
 - Mux operates at one fourth the input frequency!
Impact of Divide-by-4/5 in Multi-Modulus Pre scaler

- **Issue** – gaps are created in divide value range
 - Divide-by-4/5 lowers swallowing resolution of following stage
Method to “Fill In” Divide Value Range

- Allow divide-by-4/5 to swallow more than one input cycle per OUT period
 - Divide-by-4/5 changed to Divide-by-4/5/6/7
- Note: at least two divide-by-2/3 sections must follow
Example Architecture for a Phase-Shifted Divider

- Phase shifting in first divide-by-4/5/6/7 stage to achieve high speed
- Remaining stages correspond to gated divide-by-2/3 cells
- For details, see my thesis
 - http://www.cppsim.com/michael_h_perrott