Review of Large Signal Analysis of Current Mirrors

\[\frac{I_2}{I_1} = \frac{1}{2} \mu_n C_{ox} \frac{W_2}{L_2} \left(\frac{\Delta V_2}{(V_{GS2} - V_{TH})^2 (1 + \lambda_2 V_{ds2})} \right) \]

\[\frac{I_2}{I_1} = \frac{1}{2} \mu_n C_{ox} \frac{W_1}{L_1} \left(\frac{\Delta V_1}{(V_{GS1} - V_{TH})^2 (1 + \lambda_1 V_{ds1})} \right) \]

But, \(V_{TH} + \Delta V_1 = V_{TH} + \Delta V_2 \) \(\Rightarrow \Delta V_1 = \Delta V_2 \)

\[\frac{I_2}{I_1} = \frac{W_2}{W_1} \frac{L_1}{L_2} \frac{(1 + \lambda_2 V_{ds2})}{(1 + \lambda_1 V_{ds1})} \]

Mismatch due to \(V_{ds} \) difference based on geometry

Note: for accurate ratio, set \(L_1 = L_2 \)
The Issue of V_{ds} Mismatch in Current Mirrors

- **Issue:** Current I_2 can vary significantly as a function of the drain voltage of M_2
 - We often want a tightly controlled current set only by I_1 and transistor sizes
- **How do we improve the current mirror matching performance?**

\[
\frac{I_2}{I_1} = \frac{W_2}{W_1} \frac{(1+\lambda_2 V_{ds2})}{(1+\lambda_1 V_{ds1})}
\]

Mismatch due to V_{ds} difference

Current setting based on geometry

Note: we are assuming $L_1 = L_2$
Cascoded Current Source

- Offers increased output resistance
 - Reduces small signal dependence of output current on the output voltage of the current source
 - From Lecture 6, we derived:
 \[R_{th_{d3}} \approx r_{o3}(1 + g_{m3}R_{th_{d1}}) = r_{o3}(1 + g_{m3}r_{o1}) \approx (g_{m3}r_{o3})r_{o1} \]
 - Output resistance boosted by intrinsic gain of \(M_3, g_{m3}r_{o3} \)
- But how do we reduce the influence of large signal \(V_{ds} \) mismatch between \(M_1 \) and \(M_2 \)?
Match V_{ds} of Current Mirror Devices With Proper Bias

- **Key transistor for determining** I_2 **is** M_1
 - Why is M_2 less important?
- **Above biasing approach provides a much closer match** between V_{ds1} and V_{ds4}

\[
I_2 = \frac{W_1}{W_4} \frac{1 + \lambda V_{ds1}}{1 + \lambda V_{ds4}} I_1 \approx \frac{W_1}{W_4} I_1
\]

Recall:
\[
\frac{I_2}{I_1} = \frac{W_1}{W_4} \frac{L_4}{L_1} \frac{(1 + \lambda_1 V_{ds1})}{(1 + \lambda_4 V_{ds4})}
\]

- Current setting based on geometry
- Mismatch due to V_{ds} difference
The Drawback of Basic Cascode Bias Approach

- Output voltage range is reduced
 - Now V_o must be $> V_{TH} + 2\Delta V$
 - What will happen to the output impedance of the current source if the output voltage is too low?
 - Can we improve the voltage range?
Improved Swing Cascode

- **Key idea:** set size of M_3 such that $V_{ds1} = \Delta V$
 - Assuming strong inversion for M_1 and M_3:

$$\Delta V = \sqrt{\frac{2I_dL}{\mu n C_{ox} W}} \implies \alpha = \frac{1}{4}$$
Alternative Implementation of Improved Swing Cascode

- Set α as on previous slide
- Note: both implementations share a common problem
The Issue of Current Mismatch

- The improved swing approach causes a systematic mismatch between I_2 and I_1
 - Key issue: $V_{ds1} \neq V_{ds4}$

- Can we fix this problem?

Recall: \[\frac{I_2}{I_1} = \frac{W_2}{W_1} \frac{(1+\lambda_2 V_{ds2})}{(1+\lambda_1 V_{ds1})} \]

Mismatch due to V_{ds} difference
Techniques to Reduce Current Mismatch

- Systematic mismatch between I_1 and I_2 is greatly reduced by using the above circuit (now $V_{ds1} \approx V_{ds4}$)
 - Note that gate bias on M_2 and M_3 may be provided by previously discussed circuits

- Additional techniques for accurately matching I_1 and I_2
 - Set $L_1 = L_4 \gg L_{\text{min}}$
 - Note: set $L_2 = L_3 \approx L_{\text{min}}$ for lower area and capacitance
 - Set $W_2/W_3 = I_2/I_1$ so that $\Delta V_2 = \Delta V_3$
Another Common Cascode Bias Topology

- Key issue: needs two bias current branches
Utilizing a Simple Resistor to Achieve One Bias Branch

- Issue: poly resistor is large and won’t track NMOS devices across temperature and process variations
Better Approach: Use PMOS Device In Triode Region

- Much smaller, better tracking with NMOS devices than resistor
Wilson Current Mirror

- Relies on feedback in its operation
- Using Hybrid-\(\pi\) analysis

\[
R_{thd2} \approx \frac{1}{g_{m1}} (g_{m2}r_{o2}) (g_{m3}r_{o3})
\]

- Output resistance comparable to cascode current source
- This circuit is rarely used these days
Enhanced Cascode Current Source

- Offers output resistance comparable to double cascode current source
- As with Wilson mirror, analysis is tricky due to source/gate coupling
 - Using results shown in the following slide:
 \[R_{thd4} \approx (g_{m4}r_{o4})(g_{m3}r_{o3})r_{o1} \]
Thevenin Resistances for CMOS Transistor Feedback Pair

\[R_{thd} = r_{o4} \left(1 + \left(g_{m4} \left(1 + g_{m3} \left(R_A \| r_{o3} \right) \right) \right) + \frac{1}{r_{o4} + g_{mb4}} \right) R_B \]

\[\approx \left(g_{m4} r_{o4} \right) \left(g_{m3} \left(r_{o3} \| R_A \right) \right) R_B \]

\[R_{ths} = \left(1 + \frac{R_C}{r_{o4}} \right) \left(\frac{1}{g_{mb4} r_{o4}} \right) \left(\frac{1}{g_{m4} \left(1 + g_{m3} \left(r_{o3} \| R_A \right) \right)} \right) \]

\[\approx \left(1 + \frac{R_C}{r_{o4}} \right) \frac{1}{g_{m4} \left(g_{m3} \left(r_{o3} \| R_A \right) \right)} \]
Basic Cascode Amplifier

- Allows improved frequency response (discussed later)
- Reduction to two-port will be done in several steps
Eliminate Middle Sections

- Calculation of G_{m1} same as for common source amp
- To reduce further, note that

$$R_{th_{d1}} \gg R_{th_{s2}} \implies \alpha_2 i_{s2} = i_{s2} \approx G_{m1}v_{g1}$$
Key difference: drain impedance much larger

\[
R_{thd2} \approx r_o2(1+g_m2R_{thd1}) \approx r_o2(1+g_m2r_o1(1+g_{m1}R_s)) \\
\approx (g_m2r_o2)(g_{m1}r_o1)R_s
\]
Slight Twist to Cascode Amplifier

- What is the difference between this amplifier and basic cascode amplifier?
- What are the constraints in setting V_{bias}?
- What is the maximum output voltage swing?
Constraints on V_{bias} and Output Range

- **To keep M_2 and M_4 in saturation**

 $$V_{bias} - (V_{TH} + \Delta V_1) > \max(\Delta V_2, \Delta V_4)$$

 $$\Rightarrow V_{bias} > V_{TH} + \Delta V_1 + \max(\Delta V_2, \Delta V_4)$$

- **To keep M_1 in saturation**

 $$V_{out} - (V_{bias} - (V_{TH} + \Delta V_1)) > \Delta V_1$$

 $$\Rightarrow V_{out} > V_{bias} - V_{TH}$$
Calculation of Maximum Output Range

- Minimum V_{bias} allows the maximum output range

\[\Rightarrow V_{bias} = V_{TH} + \Delta V_1 + \max(\Delta V_2, \Delta V_4) \]

- Resulting output range

\[V_{bias} - V_{TH} < V_{out} < V_{dd} \]
\[\Delta V_1 + \max(\Delta V_2, \Delta V_4) < V_{out} < V_{dd} \]
We can turn the enhanced cascode current source into an amplifier
- Inject a current input at the source of M_4

Key aspects of small signal analysis can be done using Thevenin method
- Simply leverage Thevenin resistance formulas shown on Slide 16
Small-Signal Analysis of Enhanced Cascode Amp

From Thevenin resistance calculations on Slide 16:

- Input impedance is quite low

\[
R_{in} \approx R_{thd1} \parallel \left(1 + \frac{R_1}{r_{o4}} \right) \frac{1}{g_{m4}(g_{m3}r_{o3})} \approx \frac{1}{g_{m4}(g_{m3}r_{o3})}
\]

- Output impedance is probably determined by \(R_1 \)

\[
R_{out} \approx R_1 \parallel (g_{m4}r_{o4})(g_{m3}r_{o3})(R_{thd1} \parallel R_s) \approx R_1
\]

- This amplifier is useful for extracting a current signal while keeping the source voltage nearly constant