Introducing CMOS Devices

- **CMOS**: Complementary Metal Oxide Semiconductor
 - Current flow through channel between Drain and Source is controlled by Gate
 - Complementary: both PMOS and NMOS are available
Simplified MOS Symbol for Typical Bulk Connections

- **Bulk silicon below the channel under the gate also has an impact on the channel current**
 - We often tie the Bulk to Gnd/Vdd for NMOS/PMOS devices
 - In such case, the symbol does not include the bulk terminal
Symbol Notation Often Includes Size

The designer is generally free to choose the width (W) and length (L) of the device

- Wider width is often chosen to achieve higher channel current for a given gate bias voltage
- Longer length is often avoided since it lowers the channel current and decreases the operating speed of the device
 - The minimum length for the gate is often used to define the process name (i.e., 0.18u CMOS or 0.13u CMOS)
 - Longer length is used in cases where better matching or high resistance is desired
Channel Current as a Function of Gate Voltage

- If $V_{gs} < V_{TH}$, then current density I_d/W is small
 - The device is in the subthreshold operating region
- For $V_{gs} > V_{TH}$, then I_d/W is much larger
 - The device is in strong inversion
 - If $V_{ds} > \Delta V$, then I_d is relatively independent of V_{ds}
 - The device is in the saturation operating region
 - If $V_{ds} < \Delta V$, then I_d is strongly dependent on V_{ds}
 - The device is in the triode operating region

Note that we designate ΔV as the overdrive voltage and that $\Delta V = V_{dsat}$ in strong inversion.
PMOS Devices are Complementary to NMOS Devices

- Same observations and definitions apply to PMOS
 - However, voltage and current signs are flipped
 - Note that $V_{sg} = -V_{gs}$, $V_{sd} = -V_{ds}$
 - Note that I_d as defined above for PMOS is in the opposite direction as for NMOS
 - Note that V_{TH} becomes negative
Examine MOS Behavior As V_{ds} is Increased

How does V_{GS} influence I_d in the above curve?
MOS Behavior Is A Function of V_{gs} and V_{ds}

See page 15-23 of Razavi…
MOS Current Equations in Triode and Saturation Regions

Triode

\[I_D = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH} - V_{DS}/2) V_{DS} \]

for \(V_{DS} \ll V_{GS} - V_{TH} \)

\[I_D \approx \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) V_{DS} \]

Pinch-off

\[\Delta V = V_{GS} - V_{TH} \]

\[\Delta V = \sqrt{\frac{2I_D L}{\mu_n C_{ox} W}} \]

Saturation

\[I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2(1 + \lambda V_{DS}) \]

(where \(\lambda \) corresponds to channel length modulation)
The Issue of Velocity Saturation

- When in saturation, the MOS current is calculated as

\[I_D \approx \frac{\mu_n C_{ox} W}{2} \frac{(V_{gs} - V_{TH})^2}{L} \]

- Which is really

\[I_D \approx \frac{\mu_n C_{ox} W}{2} \frac{(V_{gs} - V_{TH})V_{dsat,l}}{L} \]

- Here \(V_{dsat,l} \) is the saturation voltage at a given length

- It may be shown that

\[V_{dsat,l} \approx \frac{(V_{gs} - V_{TH}) (LE_{sat})}{(V_{gs} - V_{TH}) + (LE_{sat})} = (V_{gs} - V_{TH})|| (LE_{sat}) \]

- If \(V_{gs} - V_{TH} \) approaches \(LE_{sat} \) in value, then
 - We say that the device is in velocity saturation
 - The current becomes \textit{linearly} related to \(V_{gs} - V_{TH} \)
Example: Current Versus Voltage for 0.18\(\mu\) Device
The Tricky Issue of Modeling MOS Devices

- The device characteristics of modern CMOS devices lead to complicated analytical models
 - This creates challenges for achieving accurate hand calculations with reasonable effort

- Hand calculations are essential in achieving deeper understanding and intuition of circuit and device behavior
 - Simple hand calculations lack accuracy
 - Detailed hand calculations often do not yield the desired insight and understanding to make them worthwhile

- A typical compromise
 - Assume simple models for hand calculations
 - Use SPICE to get a more accurate picture of the actual circuit and device characteristics and performance
What is the Key Role of Large Signal Calculations?

- In analog circuits, we are often focused on amplifiers in which the small signal behavior is of high importance.
 - Large signal calculations lead to the operating point information of the circuit which is used to determine the small signal model of the device.

- Example amplifier circuit:

Small Signal Analysis Steps
1) Solve for bias current I_d
2) Calculate small signal parameters (such as g_m, r_o)
3) Solve for small signal response using transistor hybrid-π small signal model
A Key Small Signal Parameter: Transconductance

- Transconductance from input gate voltage, V_{gs}, to channel current, I_d, is very important for amplifier circuits
 - Assuming device is in saturation:

 $$I_D = \frac{\mu_n C_{ox} W}{2L} (V_{gs} - V_{TH})^2 (1 + \lambda V_{ds})$$

 $$\Rightarrow \quad g_m = \frac{\delta I_d}{\delta V_{gs}} \approx \mu_n C_{ox} \frac{W}{L} (V_{gs} - V_{TH}) \approx \sqrt{2\mu_n C_{ox} \frac{W}{L} I_d}$$
A Key Small-Signal Nonideality: Output Resistance

- Ideally, I_d would not change with V_{ds} when the device is in saturation
 - Practical CMOS transistors exhibit I_d dependence on V_{ds} due to channel length modulation
 - The parameter λ is often used to characterize this effect

\[
\frac{1}{g_{ds}} = \frac{\delta V_{ds}}{\delta I_d} = \frac{1}{\lambda I_d}
\]
Another Non-Ideality: Back-Gate Effect

- The threshold voltage of the device, V_{TH}, is dependent on the potential between the source and bulk

$$V_{TH} = ??$$

- This implies that changes in the source node voltage, V_s, lead to changes in the channel current, I_d

- We model this effect as backgate transconductance, g_{mb}

$$g_{mb} = \frac{\delta I_d}{\delta V_s}$$

- MIC503 will provide details (also see pages 34-36 of Razavi)
Assuming transistor is in saturation:

- Note that designers often determine g_{mb} impact from SPICE

\[g_m = \mu_n C_{ox} \frac{(W/L)(V_{GS} - V_{TH})(1 + \lambda V_{DS})}{1 + \lambda V_{DS}} \]

(assuming $\lambda V_{DS} << 1$)

\[g_{mb} = \frac{\gamma g_m}{2 \sqrt{2|\Phi_F| + V_{SB}}} \]

where $\gamma = \frac{\sqrt{2q\varepsilon_s N_A}}{C_{ox}}$

In practice: $g_{mb} = g_m/5$ to $g_m/3$

\[r_o = \frac{1}{\lambda I_D} \]

See Chapter 2 of Razavi for more discussion of these formulas

MOS DC Small Signal Model

- Assuming transistor is in triode region:
 - The channel of the device can be approximated as a resistor whose value depends on the DC operating point of V_{gs}

\[
r_{ds} = \frac{1}{\mu n C_{ox} (W/L)(V_{GS} - V_{TH})}
\]
Example: Determine ΔV and Operating Region (NMOS)

- Assume $V_{THn} = 0.5V$

\[\Delta V = \]
\[\text{Region} = \]

\[\Delta V = \]
\[\text{Region} = \]

\[\Delta V = \]
\[\text{Region} = \]

\[\Delta V = \]
\[\text{Region} = \]

\[\Delta V = \]
\[\text{Region} = \]
Example: Determine ΔV and Operating Region (PMOS)

- Assume $V_{THp} = -0.5V$

\[\Delta V = \text{Region} = \]

\[\Delta V = \text{Region} = \]

\[\Delta V = \text{Region} = \]
Example: Determine Operating Region of M_1 and M_2

- Assume $V_{\text{THn}} = 0.5V$, $V_{\text{THp}} = -0.5V$, $\mu_n C_{\text{ox}} = 50\mu\text{A/V}^2$, $\mu_p C_{\text{ox}} = 20\mu\text{A/V}^2$, $\lambda = 0$, and M_1 and M_2 have the same value of W and L

- Determine operating region for M_1 and M_2 assuming:
 - $V_{\text{bias}} = 1.2$
 - $V_{\text{bias}} = 0.2$
 - $V_{\text{bias}} = 0.65$
Example: Determine ΔV and Operating Region

- Assume $V_{\text{bias}} = 0.7V$, $V_{\text{THn}} = 0.5V$, $V_{\text{THp}} = -0.5V$, $\mu_n C_{\text{ox}} = 50 \mu \text{A/V}^2$, $\mu_p C_{\text{ox}} = 20 \mu \text{A/V}^2$, $\lambda = 0$

- Determine V_{bias} such that $V_{\text{out}} = 0.5V$
 - Note that with $\lambda = 0$, a variety of V_{out} solutions will exist for the same V_{bias} – I’m just trying to keep calculations simple

- Determine the resulting operating region of M_1 and M_2