Analysis and Design of Analog Integrated Circuits
Lecture 24
Bipolar Devices and Their Applications

Michael H. Perrott
April 29, 2012

Copyright © 2012 by Michael H. Perrott
All rights reserved.
Introducing Bipolar Devices (Within CMOS Processes)

- Modern CMOS processes often offer Deep NWELL
 - Allows a buried N+ layer to be implanted
 - Vertical NPN bipolar device can be achieved

This lecture will discuss modeling and applications of such “parasitic” bipolar devices
Collector Current as a Function of V_{be}

- For $0 < V_{ce} < 200\text{mV}$, $V_{be} > 0$, device is in saturation
 - This region of operation is typically avoided
- For $V_{ce} > 200\text{mV}$, $V_{be} > 0$, device is in forward active mode

\[I_c = \beta I_b \]

\[I_c = A_e I_s (e^{V_{be}/V_t} - 1), \quad \text{where} \quad V_t = kT/q \]

\[\Rightarrow \quad g_m = \frac{\delta I_c}{\delta V_{be}} \approx \frac{I_c}{V_T} \]
Thevenin Modeling of Bipolar Device

Hybrid-π Model

Key Small-Signal Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Forward Active</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_m</td>
<td>$\frac{I_C}{V_t}$</td>
<td>$V_t = \frac{kT}{q} \approx 26mV$ at $25^\circ C$</td>
</tr>
<tr>
<td>r_π</td>
<td>$\frac{\beta}{g_m}$</td>
<td>β is Current Gain</td>
</tr>
<tr>
<td>r_o</td>
<td>$\frac{V_A}{I_C}$</td>
<td>V_A is Early Voltage</td>
</tr>
</tbody>
</table>

Thevenin Resistances

Approximation

$R_{th_c} = r_o (1+g_m(r_\pi | R_E))$

$R_{th_b} = r_\pi + (\beta+1)R_E$

$R_{the} = \frac{1}{g_m} + \frac{R_B}{1+\beta}$

Proposed Small Signal Transistor Model

$A_v = \frac{1}{1+(1+R_C)/(r_\pi+\beta r_o)}$

$\alpha = \frac{\beta}{\beta+1} (1+R_C/R_{th_c})$

$\alpha = 1$ $(R_C << \beta r_o)$

$A_v = 1$ $(R_C << R_{th_c})$
Bipolar Versus CMOS Devices

- Bipolar has higher g_m for a given amount of current
 - Useful for high speed applications
- Bipolar has lower 1/f noise and lower offset issues
 - Useful for high precision analog
- Bipolar has well defined behavior over a wide operating range: $I_c = A_e I_s (e^{V_{be}/V_t} - 1)$
- Exponential behavior allows analog multipliers and dividers to be realized using translinear principle

CMOS is the preferred device for low cost, high density, and high complexity digital circuits
Consider Adding V_{BE} Voltages

In general

$$I_c = A_e I_s \left(e^{V_{BE}/V_t} - 1 \right) \approx A_e I_s e^{V_{BE}/V_t}$$

$$\Rightarrow V_{BE} \approx V_t \ln \left(\frac{I_c}{A_e I_s} \right)$$

Addition of V_{BE} voltages corresponds to multiplication of collector currents

$$V_{BE1} + V_{BE2} = V_t \ln \left(\frac{I_1}{A_e I_s} \right) + V_t \ln \left(\frac{I_2}{A_e I_s} \right)$$

$$= V_t \ln \left(\frac{I_1 I_2}{A_e I_s} \right)$$
Consider Subtracting V_{BE} Voltages

- Subtraction of V_{BE} voltages corresponds to division of collector currents

\[-V_{BE1} + V_{BE2} = -V_t \ln \left(\frac{I_1}{A_{e1}I_s} \right) + V_t \ln \left(\frac{I_2}{A_{e2}I_s} \right) \]

\[= V_t \ln \left(\frac{I_2 A_{e1}}{I_1 A_{e2}} \right) \]

Translinear circuits can be built which achieve multiplication, division, and power-law relationships (see: http://en.wikipedia.org/wiki/Translinear_circuit)
A Closer Look at Subtracting V_{BE} Voltages

- Subtract V_{BE} of bipolar devices
 - Different emitter areas/currents

 $$\Delta V_{BE} = V_{BE2} - V_{BE1} = V_t \ln \left(\frac{I_2}{I_1} \cdot \frac{A_{e1}}{A_{e2}} \right)$$

 $$= \frac{kT}{q} \ln \left(\frac{I_2}{I_1} \cdot \frac{A_{e1}}{A_{e2}} \right)$$

- Assume ΔV_{BE} varies 0.18mV/°C
 - True if $(I_2/I_1)(A_{e1}/A_{e2}) \sim 10$

- In general, we see that ΔV_{BE} is a PTAT voltage source
 - PTAT: Proportional to Absolute Temperature

- The current through resistor R is also PTAT
 - This ignores changes in the resistance due to temperature
Implementation Details of PTAT Current Source

- Let us walk through various issues and circuit approaches for realizing our PTAT current source

Simple diode connection leads to \(I_{c2} \neq I_2 \)

- This leads to \(I_{c2} = I_2 - I_{b2} - I_{b1} \)
- But, we want \(I_{c2} = I_2 \) so that \(I_2 \approx A_{e2} I_s e^{V_{be2}/V_t} \)
NMOS Source Follower Mitigates Base Current Issue

- Simple NMOS source follower allows us to supply base current without corrupting \(I_2 \)
 - If available in the fabrication process, use a Native NMOS device which has \(V_{TH} \approx 0 \)
 - Leads to improved headroom (lower \(V_{DD} \) possible)
We can scale I_2 relative to I_1 by proper choice of W_2/W_1.
- Cascoding technique can be used to achieve better current ratio accuracy.
PTAT Current Output Is Simple Extension of Mirror

- **Issue**: temperature variability of R_1 and β

 - R_1 is biggest concern assuming β is large

\[I_3 = \frac{W_3}{W_1} I_1 = \frac{W_3}{W_1} \left(\frac{\Delta V_{BE}}{R_1} \right) \frac{\beta}{\beta + 1} \]
PTAT Current Output Can Be Converted to Voltage

- Output voltage set by ratio of resistor values R_3/R_1
 - Greatly reduces impact of R variation with temperature

\[
V_o = I_3R_3 = \frac{W_3}{W_1} \left(\frac{\Delta V_{BE}}{R_1} \right) \frac{\beta}{\beta + 1} R_3 \approx \frac{W_3}{W_1} \frac{R_3}{R_1} \Delta V_{BE}
\]
Consider Adding V_{BE} to the PTAT Voltage

- It turns out that this corresponds to a bandgap circuit
 - Proper design leads to stable V_o across temperature

\[
V_{bg} = V_{R3} + V_{BE3} \approx \frac{W_3 R_3}{W_1 R_1} \Delta V_{BE} + V_{BE3}
\]
Temperature Sensitivity of V_{BE}

- V_{BE} has opposite temperature sensitivity as ΔV_{BE}
- Recall that ΔV_{BE} is a PTAT voltage ($\approx +0.18\text{mV/}^\circ\text{C}$)

\[V_{bg} = V_{R3} + V_{BE3} \approx \frac{W_3 R_3}{W_1 R_1} \Delta V_{BE} + V_{BE3} \]
Bandgap Achieved Through Proper Scaling

\[V_{bg} = V_{R3} + V_{BE3} \approx \frac{W_3 R_3}{W_1 R_1} \Delta V_{BE} + V_{BE3} \]

- Set ratio as

\[\rho = \frac{W_3 R_3}{W_1 R_1} = \frac{2 \text{mV/}^\circ\text{C}}{0.18 \text{mV/}^\circ\text{C}} = 11.11 \]
The Brokaw Bandgap Circuit

Assuming ΔV_{BE} varies at 0.18mV/°C, set ratio as

$$\frac{2R_1}{R_2} = \frac{2mV/^\circ C}{0.18mV/^\circ C} = 11.11$$
What if Deep NWELL Is Not Available?

- Deep NWELL allows an NPN device
- A PNP device is possible without Deep NWELL
 - A key constraint is that the collector must be grounded!
Grounded Collector PNP Bandgap Circuit

- **Equation:**
 \[
 V_{bg} = V_{R3} + V_{EB1}
 \]
 \[
 = \frac{\Delta V_{EB}}{R_2} R_3 + V_{EB1}
 \]
 \[
 = \frac{R_3}{R_2} \Delta V_{EB} + V_{EB1}
 \]

 - Assuming \(\Delta V_{EB}\) varies at 0.18mV/°C, set ratio as

 \[
 \frac{R_3}{R_2} = \frac{2mV/°C}{0.18mV/°C} = 11.11
 \]
Voltage Regulation Using a Bandgap Reference

- Commonly used in modern integrated circuits
 - Rejection of power supply variation and noise
 - Variable voltage operation of circuits
Temperature Sensing Using Bipolar Devices

Recall that ΔV_{BE} is a linear function of temperature

$$\Delta V_{BE} = V_{BE2} - V_{BE1} = \frac{kT}{q} \ln \left(\frac{I_2}{I_1} \cdot \frac{A_{e1}}{A_{e2}} \right)$$

We can create an accurate temperature sensor by comparing ΔV_{BE} to a temperature stable bandgap reference voltage

- Analog-to-digital converter is used to digitize the temperature signal
Summary

- CMOS processes offer parasitic bipolar devices
 - Deep NWELL option allows both NPN and PNP devices
- We can use the same analysis tools for both bipolar and CMOS devices
 - Hybrid π and Thevenin modeling techniques
- Bipolar devices have very useful properties
 - Exponential characteristic over a wide operating range
 - Higher g_m for a given current than CMOS devices
 - Lower 1/f noise and offset issues than CMOS devices
- Bipolar devices are very useful for certain circuits
 - Translinear circuits (for multiplication and division)
 - Bandgap voltage references
 - Temperature sensors