Analysis and Design of Analog Integrated Circuits
Lecture 21

Sampling

Michael H. Perrott
April 18, 2012

Copyright © 2012 by Michael H. Perrott
All rights reserved.
Outline of Lecture

- Basic CMOS sampling structure
- Feedback sampling
- Noise of CMOS sampling structure
The Need for Sample and Hold Circuits

- Analog-to-digital converters (ADC) are key elements in allowing digital processors to interact with “real world” signals in the acoustic, RF, and optical domains.
- Sample and hold circuits are often utilized to keep the input signal into the ADC constant while it is performing its conversion.
 - Key metrics: sampling accuracy, sampling speed, hold time (while maintaining accuracy).
Track and Hold Versus Sample and Hold

- Track and hold alternates between following and holding the input value.
- Sample and hold can be created by cascading two track and hold circuits.
 - Similar to digital registers which are created by cascading two latches.
Track and Hold Based on a CMOS Switch

- CMOS transistors make nice switches
 - Much better than bipolar devices since they do not have the issue of base charge storage
- Key performance issues
 - Switch resistance
 - Charge injection
 - Leakage
Accurately following the input by the end of the tracking period is important in order to achieve an accurate hold value.

- Switch resistance, R_{ch}, and load capacitance, C_L, form a lowpass filter with limited bandwidth.
 - Low R_{ch} is desirable for better tracking behavior.
 - The cutoff frequency of the RC lowpass must be significantly higher than the frequency of $V_{clk}(t)$.

Impact of Switch Resistance

![Circuit Diagram](image-url)
Calculation of Switch Resistance

- Assuming that the input and output of the switch are reasonably close in value (i.e., V_{ds} is small), we can assume triode operation of the transistor

\[
R_{ch} \approx \frac{1}{\mu n C_{ox} W/L (V_{gs} - V_{TH})}
\]

- For low R_{ch}, we want:
 - Large W, Small L, Large V_{gs}
 - Issue: we need $V_{gs} > V_{TH}$
Impact of Charge Injection

- Charge injection disturbs the tracked value due to charge transfer that occurs from two key sources
 - Overlap capacitance
 - Caused by capacitive coupling of clock edge onto load capacitor, C_L
 - Channel charge
 - Caused by expelling the channel charge as device is abruptly turned off
Change in voltage due to overlap capacitance and charge injection (for fast fall time on $V_{clk}(t)$)

$$\Delta V \approx -\frac{C_{ov}}{C_{ov} + C_L}(V_{HI} - V_{LO}) + \frac{q_{ch}}{2} \frac{1}{C_L}$$

where

$$q_{ch} = -C_{ox} WL (V_{gs} - V_{TH})$$

$$= -C_{ox} WL (V_{HI} - V_{in} - V_{TH})$$
Signal Dependence Versus Offset for Charge Injection

- Overall charge injection impact (from previous slide)

\[
\Delta V \approx -\frac{C_{ov}}{C_{ov} + C_L}(V_{HI} - V_{LO}) - \frac{C_{ox}}{2C_L}WL(V_{HI} - V_{in} - V_{TH})
\]

Overlap Capacitance

\[
\Delta V \approx \frac{C_{ox}}{2C_L}WL V_{in} - \frac{C_{ov}}{C_{ov} + C_L}(V_{HI} - V_{LO}) - \frac{C_{ox}}{2C_L}WL(V_{HI} - V_{TH})
\]

Signal Dependent

\[
\Delta V \approx -\frac{C_{ov}}{C_{ov} + C_L}V_{in} - \frac{C_{ox}}{2C_L}WL(V_{HI} - V_{TH})
\]

Offset

- Track and Hold

\[
V_{clk}(t) \quad V_{in}(t) \quad V_{out}(t) \quad \Delta V
\]

\[
V_{HI} \quad V_{LO} \quad \frac{V_{clk}(t)}{2}
\]

\[
V_{out}(t) \quad (desired) \quad V_{out}(t) \quad (actual)
\]
Minimizing Charge Injection

- Lowering the size of the device (WL)
- Increasing C_L

Each of the above leads to an unacceptable increase in $R_{ch}C_L$
(large L is especially problematic – it should be kept at minimum)

$$\Delta V \approx \frac{C_{ox}}{2C_L}WLV_{in} - \frac{C_{ov}}{C_{ov} + C_L}(V_{HI} - V_{LO}) - \frac{C_{ox}}{2C_L}WL(V_{HI} - V_{TH})$$
Adding a Dummy Device

- Consider adding a dummy device, M_{dummy}, that has half the width of the switching device, M_1
 - Use minimum length for both devices
- In theory, both overlap cap impact and charge injection should be cancelled!
 - In practice, this does not work so well due to poor clock edge alignment, variable behavior of M_1 charge injection
Using Complementary Switches

- Cancels influence of overlap capacitance to some degree
- Worse for channel charge injection
 - This leads to worse signal dependent charge injection
- Reduces switch resistance (this is very useful)
 - Parallel combination of R_{chp} and R_{chn}
 - Worst case: when V_{in} is in the middle of the supply range
Bootstrapped Switches

- Bootstrapping offers several nice benefits
 - Increased gate drive (often above the supply voltage)
 - Reduces R_{ch} while allowing a smaller switch size
 - Constant voltage between the input and clock during the tracking phase
 - Greatly reduces signal dependent charge injection issues
- Bootstrapping backgate is also becoming common with deep N-well processes
 - Recent example: Brunsilus et. al., ISSCC 2011
Buffered Track and Hold Circuit using Opamp

- Provides several benefits
 - Increases settling bandwidth to allow faster sampling frequency
 - Assuming parasitic cap, C_{par}, is less than load cap, C_L
 - Issue: we will see that we need a reasonable large sampling capacitor for noise reasons
 - Isolation of sensitive switch output from any perturbations from the ADC (such as kickback from its internal switches)
- Issue: adds additional offset voltage of the opamp
Use Feedback Sampling to Mitigate Opamp Offset

- Uses different placement of the sampling capacitor, C_s, between track and hold phases
 - We will see how this can largely eliminate the impact of opamp offset
- Such feedback sampling topologies often require multi-phase clocks
 - Key goal is to achieve non-overlapping ‘On’ times such that current flow does not occur through multiple switches at once
First Consider Tracking Phase on Sampling Cap C_1

First calculate V_{out}

$$V_{\text{out}} = K(V_{\text{ref}} - (V_{\text{out}} + V_{\text{off}}))$$

$$\Rightarrow V_{\text{out}} = \frac{K}{K + 1}(V_{\text{ref}} - V_{\text{off}}) \approx V_{\text{ref}} - V_{\text{off}}$$

We now calculate V_{Cs} as

$$V_{\text{Cs}} = V_{\text{in}} - V_{\text{out}} = V_{\text{in}} - (V_{\text{ref}} - V_{\text{off}})$$
Now Consider Hold Phase on Sampling Cap C₁

- Calculate V_{out} as

$$V_{out} = K(V_{ref} - (V_{out} - V_{Cs} + V_{off}))$$

$$\Rightarrow V_{out} = \frac{K}{K + 1}(V_{ref} + V_{Cs} - V_{off}) \approx V_{ref} + V_{Cs} - V_{off}$$

- Recall that $V_{Cs} = V_{in} - V_{ref} + V_{off}$

$$\Rightarrow V_{out} \approx V_{ref} + V_{in} - V_{ref} + V_{off} - V_{off} = V_{in}$$

Impact of opamp offset is cancelled out!
Fully Differential Version of Feedback Sampler

- Helps to cancel out the influence of charge injection
 - Appears as common-mode noise source
Influence of Thermal Noise on Sampling

- CMOS switch adds noise during the tracking phase
 - This noise is sampled as the switch is turned off at the beginning of the hold phase
- Calculation of the variance (i.e. power) of the sampled noise
 - First determine the spectral density of the noise during the tracking phase
 - Integrate the spectral density to obtain the variance of then noise
Calculation of Noise Spectral Density (Double Sided)

- **Spectral density at output (double sided):**

\[
S_{V_{\text{out}}}(f) = |H(f)|^2 \quad S_{v_n}(f) = |H(f)|^2 2kT R_{ch}
\]

- Where

\[
H(s) = \frac{1}{1 + sR_{ch}C_s} \quad \Rightarrow \quad H(f) = \frac{1}{1 + jf 2\pi R_{ch}C_s}
\]

- A useful fact

\[
\int_{f=\infty}^{\infty} \left| \frac{1}{1 + jf/f_o} \right|^2 df = \pi f_o
\]
Calculation of Noise Variance

- Calculation of noise variance

\[
P_{V_{out}} = \sigma_{V_{out}}^2 = \int_{-\infty}^{\infty} S_{V_{out}}(f) df = \int_{-\infty}^{\infty} \left| \frac{1}{1 + jf/f_o} \right|^2 2kT R_{ch} df
\]

- Where

\[
f_o = \frac{1}{2\pi R_{ch} C_s}
\]

\[
\Rightarrow \sigma_{V_{out}}^2 = \pi f_o 2kT R_{ch} = \pi \frac{1}{2\pi R_{ch} C_s} 2kT R_{ch} = \frac{kT}{C_s}
\]

Sampled noise variance depends only on the sample cap value!
Summary

- The CMOS sampling circuit is a key element for many systems
 - Analog to digital conversion
 - Switched capacitor filters (to be discussed in MIC513)
- Key issues for sampling circuits are
 - Accuracy (i.e., offset, noise)
 - Key insight: noise set by sample cap value
 - Speed (i.e., setting time)
 - Leakage
- Opamp feedback circuits are often combined with CMOS sampling circuits
 - Provide buffering and isolation of kickback from the circuit that follows
 - Introduce extra offset and noise
 - Clever circuit topologies can largely eliminate opamp offset