
 1

CppSim/VppSim Primer for Cadence
Version 5.1

Michael H. Perrott

http://www.cppsim.com

August 5, 2012

Copyright © 2005-2012 by Michael H. Perrott
All rights reserved.

Table of Contents

Introduction ... 2
Known Bugs .. 2
Setup .. 2
Using CppSim within Cadence ... 4

A. Starting Cadence ... 4
B. CppSim simulation example ... 4
C. Using CppSimView (the CppSim custom viewer) ... 6
D. Viewing CppSim results within Matlab ... 8
E. Running CppSim simulations within Matlab .. 9

Setting CppSim simulation parameters for a given run .. 12
Examining existing CppSim modules ... 13

A. Starting Cadence ... 13
B. Examination of the cellviews of an existing CppSim module .. 13
C. Examination of the CDF parameters of an existing CppSim module .. 18

Creating new CppSim modules ... 20
A. Starting Cadence ... 20
B. Creation of new Cadence library .. 20
C. Creation of a new CppSim module schematic .. 20
D. Creation of a new CppSim module symbol .. 22
E. Creation of new CppSim module parameters ... 23
F. Creation of new CppSim module code ... 26

VppSim Simulations ... 29
Incorporating VppSim modules within AMS ... 29

A. Starting Cadence ... 29
B. Opening AMS Example using VppSim modules ... 30
C. Automatic generation of VppSim modules and associated PLI code .. 32
D. Setting up AMS Simulation within the Cadence Hierarchy Editor .. 33
E. Running the AMS Simulation within the Cadence Hierarchy Editor ... 38
F. Viewing Results within SimVision ... 39

 2

Introduction

CppSim is a general behavioral framework that leverages the C++ language to achieve very fast
simulation times, and a graphical framework to allow ease of design entry and modification. Users
may freely use this package for either educational or industrial purposes without restriction. However,
the package and all of its components come with no warranty or support.

The CppSim/VppSim framework is a superset of three different, but related, simulation environments:

 CppSim: C++ and Verilog co-simulation, with C++ providing the primary simulation engine.
 VppSim: C++ and Verilog co-simulation, with Verilog providing the primary simulation

engine.
 AMS with VppSim modules: C++, Verilog, VHDL, and SPICE co-simulation

Of the above, CppSim is the most mature and has been widely used in the form of a freely available
Windows package. The primary difference between this distribution and the Windows one is that the
Linux platform is used, and Cadence is used for schematic entry. The VppSim simulator allows use of
CppSim modules within the Icarus Verilog or Cadence ncverilog simulator. AMS with VppSim
modules allows use of CppSim modules within the AMS Designer program.

The CppSim/VppSim framework has the advantage of allowing very sophisticated and fast simulation
of complex mixed-signal circuits/systems at the behavioral level by using CppSim or VppSim within
the Cadence design environment. The user can seamless move from analog behavioral level
simulations using CppSim into digital design (i.e., Verilog) using VppSim. The user can also co-
simulate the C++ behavior blocks with SPICE (and Verilog/VHDL) models by using AMS Designer
in conjunction with VppSim modules.

Known Bugs

1) The AMS interface is quite limited at this stage. In particular, all VppSim modules are
assumed to have a constant time step of #1 in the Verilog simulation engine.

2) Some of the CppSim examples have not been tested within the Cadence setup.

Setup

1) In your web browser, go to http://www.cppsim.com and look for the links corresponding to the
following files:
 cppsim_dist5.tar.gz

o This tar file contains the entire CppSim/VppSim package for Cadence.
 amsd.tar.gz

o This tar file contains an example that shows how CppSim modules can be
incorporated within AMS runs.

2) Download the file cppsim_dist5.tar.gz
3) At the Linux shell prompt, type

> tar zxvf cppsim_dist5.tar.gz
 This will untar the file and create a directory called CppSim_Dist
 Within CppSim_Dist, you will see three directories and two files:

 3

o CppSim
 This directory is intended to be replicated for each individual user, and will

likely be placed in the user’s home directory. It contains files used for
running individual simulations, and is the place where each user’s
simulation results will be stored.

o CppSimShared
 This directory is intended to be shared by all users at a given site. It

contains all supporting binaries, shared Cadence libraries, shared code, and
shared Skill code for the CppSim GUI within Cadence. It also contains a
directory MatlabGui within which the cppsimview waveform viewer code
is located.

o menus
 This directory is used to set up the CppSim GUI menu item within

Cadence schematic windows.
o cshrc_code

 This file contains example code that should be placed within the
.tcshrc.mine or .cshrc.mine file of each user. If you are not using tcsh or
csh, then you will need to change the commands in this file according to
whatever Linux shell you use.

o bashrc_code
 This file contains example code that should be placed within the .bashrc

file of each user. This assumes you use the bash shell rather than the csh or
tcsh shell.

4) Place each of the directories within CppSim_Dist at appropriate locations
 CppSim: should be placed in the user’s home directory or some other appropriate location

o It will be assumed that it is placed in the user’s home directory at ~/CppSim for the
remainder of this document.

 CppSimShared: should be placed in a directory that is readily accessible by all users
o It will be assumed that it is placed at /u/CppSimShared for the remainder of this

document. (Note that it can also just be placed in the user’s home directory if
desired).

 menus: this MUST be placed in the user’s home directory in order for Cadence to
recognize it.

5) If you want the AMS example, then also download amsd.tar.gz
 At the Linux shell prompt, type

> tar zxvf amsd.tar.gz
o This will untar the file and create a directory called AMSD
o Place the AMSD directory in the user’s home directory or some other appropriate

location. In the remainder of this document, it will be assumed to have been placed
in the user’s home directory at ~/AMSD.

6) Add and appropriately modify the code in cshrc_code (or bashrc_code) to the user’s
.tcshrc.mine (or .bashrc) file or whatever the appropriate startup script is for their Linux shell
environment. Be sure to source the startup script before running Cadence.
 Make sure that your EDITOR environment variable is set to your desired graphical text

editor (such as emacs or gvim)

 4

Using CppSim within Cadence

Given completion of the above setup, we now explain the basics of running CppSim within Cadence.

A. Starting Cadence

 Be sure to start Cadence within the ~/CppSim/cds directory. This is necessary in order to

access the appropriate cds.lib file and .cdsinit file available in that directory. Experienced
Cadence users can move these files to a different directory of their choice, and start
Cadence there. At the Linux prompt, type:

For Cadence 5:
> cd ~/CppSim/cds
> icms &

For Cadence 6:
> cd ~/CppSim/cds
> virtuoso &

B. CppSim simulation example

 Open the sd_synth_fast schematic cellview within the Synthesizer_Examples library by
double-clicking on it within the Cadence Library Manager.

 In the newly opened schematic windows, select Options->CppSim/VppSim to open up
the CppSim/VppSim GUI within Cadence.

 5

 Click on the CppSim radio button within the CppSim/VppSim GUI.

 Click on the Compile/Run button within the CppSim/VppSim GUI. The current
schematic will be automatically netlisted and then the CppSim simulation will begin. You
will see some warning messages, but the end result should be as shown below. Note:

 6

expand the CppSim/VppSim GUI window in order to place the scrollbars within the
Result: portion of the GUI as shown below.

C. Using CppSimView (the CppSim custom viewer)

There are two ways of running CppSimView in order to view simulation results: from within Matlab
or from the Linux shell window. Note that there are some slight differences between CppSimView
for the two approaches, and we will assume that it is run from within Matlab for the examples to
follow.

Running CppSimView within Matlab

Running CppSimView from within Matlab has the advantage that it requires only minor setup effort,
but carries the disadvantage of requiring Matlab and its Signal Processing Toolbox to be installed on
the machine.

 Within Matlab (version 7 or later):

Note that you must first compile two files in Matlab for cppsimview to work:
> cd /u/CppSimShared/MatlabGui/CppSimView
> mex loadsig_cppsim.c
> mex min_max_decimate.c

> addpath(‘/u/CppSimShared/MatlabGui/CppSimView’)
> cppsimview

Running CppSimView from the Linux shell

Running CppSimView from the Linux shell has the advantage of not requiring Matlab to be installed
on the machine, but carries the disadvantage of requiring Wine to be installed. While Wine is free and
readily available, its installation will likely require the help of a system administrator. Please see the

 7

Wine webpage at http://www.winehq.org for further details on how to download and install this
software.

 At the Linux shell prompt:
> cppsimview

o Note that cppsimview will provide an error message if Wine is not installed.

As a side comment, note that the PLL Design Assistant can also be run from the Linux shell prompt
once Wine is installed:

 At the Linux shell prompt:
> plldesign

Using CppSimView (either by running in Matlab or from the Linux shell)

 The viewer should appear and will automatically synch to the last cellview that was netlisted
from the CppSim/VppSim GUI. Such netlisting occurs whenever you click on the Netlist
Only or Compile/Run button with the CppSim/VppSim GUI. Pushing Synch in the
cppsimview window will also synchronize to the last cellview that was netlisted from the
CppSim/VppSim GUI.

 Click on the No Nodes radio button in cppsimview in order to display the nodes that were
probed in the CppSim output file test.tr0.

 Double-click on node vin to display a plot of this signal

 8

D. Viewing CppSim results within Matlab

 Within Matlab, type the commands as shown below to see the associated plot of vin.

 9

E. Running CppSim simulations within Matlab

 Within the CppSim/VppSim GUI in Cadence, push the Netlist Only button. You will see

instructions of how to run CppSim in both a Linux shell and in Matlab. Note that netlisting
within the CppSim/VppSim GUI must always occur before changes to a schematic will be
reflected in CppSim simulations run either from a Linux shell or Matlab.

 10

 Assuming that you have already run the Matlab commands from the previous section, simply
execute cppsim at the Matlab prompt

 Upon completion of the CppSim run, the Matlab screen should appear as follows

 11

 Viewing or postprocessing of signals is easily achieved with the Hspice Toolbox commands,
which are accessed by typing the following command in Matlab:

o addpath(‘/u/CppSimShared/HspiceToolbox’)

 12

Setting CppSim simulation parameters for a given run

Simulation parameters for individual simulation runs are set in a file named test.par within your
CppSim/SimRuns/ directory structure. The test.par file can be edited directly, or accessed using the
CppSim/VppSim interface.

 Assuming that you have already opened the sd_synth_fast schematic view and its
corresponding CppSim/VppSim GUI window (as described in the previous section), then
push the Edit Sim File button within the CppSim/VppSim GUI window. In the case that
there is no simulation file available, pushing of Edit Sim File creates a new one.

 A text Editor window should appear as shown below.
o Notice that the number of time steps, the time step value, and the signals to be probed

are all specified here.
o To change any simulation parameters, modify them within the editor and then save the

changes before your next run.

 13

Examining existing CppSim modules

Within the CppSim framework, CppSim modules are placed within the Cadence design hierarchy as
standard text files. Creation of their schematics, symbols, and parameters follows standard
conventions for the Cadence package. Here we view the different components of an example cell that
has already been created.

A. Starting Cadence

 Be sure to start Cadence within the ~/CppSim/cds directory. This is necessary in order to

access the appropriate cds.lib file and .cdsinit file available in that directory. Experienced
Cadence users can move these files to a different directory of their choice, and start
Cadence there.

o cd ~/CppSim/cds
o icms & (or virtuoso & for Cadence 6)

B. Examination of the cellviews of an existing CppSim module

 Within the Cadence Library Manager, double-click on the cppsim view of the

leadlagfilter cell within the CppSimModules library.

 An editor window should appear with the CppSim module code, as shown below.

 14

o Notice the template description of a CppSim module, which is described in fuller
detail in the CppSim Reference Manual. The following sections comprise a
CppSim module description file:

 module – the name of the CppSim module
 description (optional) – a high level description of the module
 parameters – module parameters that can be set in the netlist editor
 inputs – inputs to the module
 outputs – the module’s outputs
 classes – a list of CppSim class instantiations the module will use
 static_variables – variables that will preserve their state for the lifetime of

the simulation
 init – C++ code to initialize the static variables and outputs
 code – C++ code that governs the behavior of the module
 end (optional) – C++ code that will be executed at the end of the simulation

o You may close the editor once you have examined its contents.

 Within the Cadence Library Manager, double-click on the schematic view of cellview
leadlagfilter within the CppSimModules library.

 15

 A schematic view should appear as shown below.
o Note this schematic only has input and output pins since it is represented by

CppSim module code. However, it could also contain instances and circuit
elements. In such case, CppSim can still represent the block as CppSim code, and
thereby ignore the instances and circuit elements within the block. This feature
allows one to represent an existing circuit with corresponding CppSim behavioral
code without having to make any modifications to the circuit schematics.

 16

 Within the Cadence Library Manager, double-click on the symbol view of cellview
leadlagfilter within the CppSimModules library.

 A symbol view should appear as shown below.
o Notice that this symbol has three parameters associated with it: fp, fz, and gain.

The statements shown here are used to display the value of the parameter. Creation
of the parameters are achieved by using the CDF tool within the Cadence CIW
window, and discussed shortly.

o Note also the following conventions in creating CppSim symbols:
1. Place pins and external shapes on grid.
2. Space the pins at least one grid away from the edge of the shape and other pins
3. Pins should be square with no legs (logic gates, etc. can be exceptions)
4. Shape outline should conform to visible shape (not outside text, etc.)
5. Justify all parameters, partnames, and instancenames to centerLeft
6. [@partName] should be placed over the upper left of the shape, justified with the left edge
7. [@instanceName] should be to the right of the bottom right shape corner
8. parameters should be below the bottom left shape corner, with multiple parameters spaced one

grid apart
9. All text size should be 0.0625 in stick font (default)
10. Write units whenever possible (i.e., Hz) for parameters

 17

 Within the Cadence Library Manager, double-click on the vppsim view of cellview
leadlagfilter within the CppSimModules library.

 An editor window should appear with the VppSim module code, as shown below.
o Note that this code was previously auto-generated using the AMS with VppSim

Modules option within the CppSim/VppSim GUI window.
o Note that the vppsim code corresponds to a Verilog-AMS module, and that it

consists of a Verilog-AMS wrapper that calls the PLI function $leadlagfilter(…).

 18

This PLI function is automatically created when using the AMS with VppSim
Modules option within the CppSim/VppSim GUI window, and included by using
the loadpli1 option within the Elaborator Options interface of AMS.

o More details of including VppSim modules within AMS are discussed later in this
document.

C. Examination of the CDF parameters of an existing CppSim module

 Within the Cadence CIW window, click on Tools->CDF->Edit.

 19

 Within the Edit Component CDF window that pops up, select the CDF Type to be Base,

and the Library and Cell names to be CppSimModules and leadlagfilter, respectively.

 Click on Edit within the Component Parameters section of the above window. An Edit
CDF parameter window should appear as shown below.

o Take careful note of the options shown in the form below (i.e., paramType,
parseAsNumber, etc.). These same option settings must be used for ALL CppSim
modules.

 20

Creating new CppSim modules

This section will describe how to create new CppSim modules. It is assumed that you have already
read the previous section which describes the basic structure of CppSim schematics, symbols,
parameters, and code.

A. Starting Cadence

 Be sure to start Cadence within the ~/CppSim/cds directory. This is necessary in order to

access the appropriate cds.lib file and .cdsinit file available in that directory. Experienced
Cadence users can move these files to a different directory of their choice, and start
Cadence there.

o cd ~/CppSim/cds
o icms & (or virtuoso & for Cadence 6)

B. Creation of new Cadence library

 Select File->New->Library within the Cadence Library Manager.

 In the window that appears, name the library MyCppSimLib. After pressing OK,
designate that you do not need a techfile within the form that appears.

C. Creation of a new CppSim module schematic

 Select MyCppSimLib within the Cadence Library Manager and then select File->New-
>Cell View.

 In the window that appears, choose the Cell Name to be my_cppsim_module and then
press OK.

 21

 Within the newly opened schematic window, create 2 input and 1 output pins named input1,
input2 and output, respectively. Attach noConn instances from the CppSimModules library
to each of the pins in order to avoid warning messages when you save the schematic. Here is a
list of Cadence command shortcuts that may be helpful to you:

o i – add instance of module
o p – add input/output pin
o w – add wire
o l – add label
o q – view/edit object parameters
o r – rotate object
o Delete – delete object
o u – undo
o f – zoom fit
o [– zoom out
o] – zoom in
o Arrow keys – pan up/down/left/right
o S – save
o F7 – close window

 Press the check-and-save button to save the schematic. Upon completion, your schematic
should appear as below.

 22

D. Creation of a new CppSim module symbol

 Within the schematic window, select Design->Create Cellview->From Cellview as shown

below. Press OK on the forms that follow.

 A default symbol window should appear. We will make a few cosmetic changes, and then add
text for parameters.

 23

 As discussed in part B of the previous section, it is nice to follow certain cosmetic rules when
creating symbols. Following those rules, we adjust the symbol drawing and add parameter
text as shown below. Be sure to save the symbol once you have completed your changes.

E. Creation of new CppSim module parameters

 Within the Cadence CIW window, select Tools->CDF->Edit.

 In the Edit Component CDF window that appears, choose the CDF Type to be Base, and
then enter MyCppSimLib and my_cppsim_module as the Library and Cell names,

 24

respectively. (NOTE: you may also click “Browse” and locate the module graphically rather
than typing in the name)

 Click on the Add button within the Component Parameters section of the above window.
Within the Add CDF Parameter window that appears, make the selections and form entries
as shown below. Press OK when you have completed the changes. (NOTE: remember to
always use these settings for paramType, parseAsNumber, units, parseAsCEL, and
storeDefault)

 25

 Within the Edit Component CDF window, click on Add again within the Component
Parameters section.

 Within the Add CDF Parameter window that appears, make the changes as indicated below.
In particular, be sure to choose the parameter to be added after parameter amp1. This eases
the editing of parameters in schematics by having the order of parameters listed in the symbol
match that of the parameter edit form. Press OK when you have completed the changes
below, and then OK in the Edit Component CDF window.

 26

F. Creation of new CppSim module code

 Within the Cadence Library Manager, select MyCppSimLib and then File->New->Cell
View as shown below.

 27

 Within the Create New File window that opens, select Text-Editor as the Tool.

 Designate the View Name to be cppsim, and then push OK. (NOTE: this is where it is
important to have your EDITOR environment variable set to a graphical editor)

 A blank Editor window should appear, within which you should fill in the CppSim module
description. Enter the following description:

 28

module: my_cppsim_module

description:

parameters:
 double amp1;
 double amp2;

inputs:
 double input1;
 double input2;

outputs:
 double output;

classes:

static_variables:

init:

code:
 output = amp1 * input1 + amp2 * input2;

end:

G: Testing your new CppSim module

 From the Cadence Library Manager, create a new schematic Cell View named top_level

 Build the following structure in the top_level schematic and use it to test the module you

created using the procedures described in previous sections: (NOTE: all modules that are not a
part of your library can be found in the CppSimModules library)

 29

.

VppSim Simulations

VppSim provides translation of a CppSim simulation to Verilog code combined with PLI modules so
that ncverilog (or Icarus Verilog) can be used as the simulator. One can get a sense of how it works
by examining a tutorial for MIT class 6.973 (taught by Vladimir Stojanovic) which is available at
http://www.cppsim.com. Documentation for the VppSim tool will be expanded in the future.

Incorporating VppSim modules within AMS

CppSim modules can also be used within AMS, so that seamless co-simulation can be achieved with
SPICE, Verilog, and VHDL modules. To do so, the CppSim modules are embedded within Verilog-
AMS wrapper code that allows them to be treated as standard Verilog-AMS modules. The auto-
generated Verilog-AMS modules are referred to as VppSim modules. It is important to realize that
VppSim modules directly execute the C++ code corresponding to their respective CppSim module –
no translation is done. Rather, the C++ code is simply wrapped within a Verilog module to allow
seamless incorporation within the Verilog and AMS simulation environments.

A. Starting Cadence

 30

 Be sure to start Cadence within the ~/CppSim/cds directory. This is necessary in order to
access the appropriate cds.lib file and .cdsinit file available in that directory. Experienced
Cadence users can move these files to a different directory of their choice, and start
Cadence there.

o In Linux shell window:
> cd ~/CppSim/cds
> icms & (or virtuoso & for Cadence 6)

B. Opening AMS Example using VppSim modules

 Double-click on the config view of the ams_test cellview within the AMS_Examples library

in the Cadence Library Manager.

 Click the yes radio buttons on the resulting dialog box.

 Within the resulting schematic window, take note of the following items:

 31

o W2E modules: translate from wreal signals (i.e., double-valued signals within the
Verilog-AMS environment) to electrical signals (i.e., SPICE signals).

o E2W modules: translate from electrical signals (i.e., SPICE signals) to wreal signals
(i.e., double-valued signals within the Verilog-AMS environment).

o vco and lpf_first_order modules: CppSim modules that are represented by their
vppsim view within the AMS simulation.

o RC networks: examples of SPICE-level components.
Note that the W2E and E2W modules could be automatically inserted by AMS through proper
set up of the AMS configuration. Here we show these translation modules for simplicity in
illustrating the key ideas of the example.

 Click on Options->CppSim/VppSim within the resulting schematic window in order to bring
up the CppSim/VppSim GUI window.

 32

C. Automatic generation of VppSim modules and associated PLI code

 Click on the AMS with VppSim modules radio button within the CppSim/VppSim GUI

window, and then press the Compile/Run button.
o The value of Ts should correspond to the time step associated with #1 within the

Verilog portion of the AMS simulation. To explain, VppSim modules execute their
code within Verilog always loops that repeat every #1 time step of the Verilog portion
of the simulation:

 always begin
 #1
 $cppsim_module_code(…)
 end
 For the given example, the default value of 10e-12 is correct (i.e., no need to change
 the value).

o Note that the above convention may be changed in the future in order to allow more
flexible timing of VppSim modules.

o At completion of the Compile/Run command, PLI code corresponding to the CppSim
modules within the schematic has been automatically created and compiled. This code
will be included in the AMS simulation run, as discussed shortly.

 33

D. Setting up AMS Simulation within the Cadence Hierarchy Editor

 Click on Plug-Ins->AMS to add the AMS menu item in the Cadence hierarchy editor.

 34

 Click on AMS->Design Prep… within the Cadence hierarchy editor in order to open the
AMS Design Prep dialog box.

 35

 Click on Run in the AMS Design Prep dialog box.

 Upon completion of the Design Prep step, click on AMS->Run Simulation… within the
Cadence hierarchy editor.

 36

 Click on the Elaborator Options button within the AMS Run Simulation window that
appears.

 37

 Examine the various parameters specified within the AMS Options window that appears. In
particular, notice the following items:

o Default timescale: 10ps/10ps
 This designates that the Verilog portion of the simulation assumes that the #1

time step corresponds to 10e-12. The setting of Ts within the
CppSim/VppSim GUI window was chosen to match this value.

o Additional arguments:
-loadpli1 $CPPSIMHOME/AMS/AMS_Examples/ams_test/cppsim_modules.so:cpp_bootstrap

 This includes the PLI code generated from the CppSim/VppSim GUI window.
Note that the CppSim/VppSim GUI window displayed this command so that
one could simply paste it into this location if needed.

 Hit Cancel in the AMS Options window once you have examined the above. All parameters
were previously set for you in this case – we simply examined them for informational
purposes.

 38

E. Running the AMS Simulation within the Cadence Hierarchy Editor

 Click on the Run button in the AMS Run Simulation window.

 39

F. Viewing Results within SimVision

 At this point, the SimVision windows should appear. Select signals n0, n1, etc. in the Design

Browser window by pressing the button highlighted below.

 40

 Click on the button highlighted below to run the simulation.

 41

 After expanding the time axis and fitting the y-axis to the waveforms, the results in the

Waveform window should appear as shown below.

