Intro to Fourier Series

- Vector decomposition
- Even and Odd functions
- Fourier Series definition and examples

Copyright © 2007 by M.H. Perrott All rights reserved.

$$a_x = ??, \quad a_y = ??$$

The Basis Vectors are Not Unique

Observations on Basis Decomposition

- We can consider any vector as a *sum* of weighted orthonormal basis vectors
- The weights are determined by an *inner* product calculations (also known as projections)
 - Consist of element-by-element multiplications followed by addition of the resulting products

Can We Decompose Functions?

• Consider a periodic function such as a square wave

- Could we decompose the above waveform into a weighted sum of *basis functions*?
- If so, what would be a good choice for such basis functions?
- How would we calculate the weights?

Consider Sine Wave Basis Functions

• Suppose we consider sine waves of progressively increasing frequencies as our basis functions

- Check out the following Java applet demo:
 - Available at: http://www.falstad.com/fourier/

Issue: Sine Waves Are Limited

• A sine wave corresponds to an *odd* function

Odd function definition:

f(t) = -f(-t)

 Adding odd functions together can only produce an odd function

Consider Cosine Wave Basis Functions

• Even function definition:

$$f(t) = f(-t)$$

• Cosine waves are even functions

Combine Cosines and Sines

• If we use both cosine and sine waveforms as basis functions, we can realize both even and odd functions (and any combination)

The Fourier Series

 A periodic waveform, x(t), with period T can be represented as an infinite sum of weighted cosine and sine waveforms

where for n > 0:

$$a_n = \frac{2}{T} \int_{t_o}^{t_o + T} x(t) \cos(nw_o t) dt, \ b_n = \frac{2}{T} \int_{t_o}^{t_o + T} x(t) \sin(nw_o t) dt$$

and where:
$$w_o = \frac{2\pi}{T}, \quad a_0 = \frac{1}{T} \int_{t_o}^{t_o+T} x(t) dt$$

M.H. Perrott © 2007

Intuition for Fourier Series

Compare Fourier Series to vector decomposition:
 Vector Decomp.
 Fourier Series

$$\hat{r} = a_x \hat{x} + a_y \hat{y} \qquad x(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nw_o t) + b_n \sin(nw_o t)$$

$$a_x = \hat{r} \cdot \hat{x}, \qquad a_0 = \frac{1}{T} \int_{t_o}^{t_o + T} x(t) dt,$$

$$a_y = \hat{r} \cdot \hat{y} \qquad a_n = \frac{2}{T} \int_{t_o}^{t_o + T} x(t) \cos(nw_o t) dt,$$

$$b_n = \frac{2}{T} \int_{t_o}^{t_o + T} x(t) \sin(nw_o t) dt$$

 The Fourier Series weight (i.e., a_n and b_n) calculations are analogous to vector inner products!

Intro to Fourier Series, Slide 13

• We can plot Fourier coefficients as a function of index or frequency n

Intro to Fourier Series, Slide 15

Fourier Series of Phase-Shifted Cosine

• Using a well known trigonometric identity:

 $K\cos(w_o t - \theta) = K\cos(\theta)\cos(w_o t) + K\sin(\theta)\sin(w_o t)$

M.H. Perrott © 2007

Vector View of Phase-Shifted Cosine

Using a well known trigonometric identity:

 $K\cos(w_o t - \theta) = K\cos(\theta)\cos(w_o t) + K\sin(\theta)\sin(w_o t)$

Summary

- Vector decomposition provides a nice starting point for understanding Fourier Series
 - Vector decomposition into a sum of weighted basis vectors
- Fourier Series decomposes *periodic* waveforms into an infinite sum of weighted cosine and sine functions
 - We can look at waveforms either in 'time' or 'frequency'
 - Useful tool: even and odd functions
- Some issues we will deal with next time
 - Fourier Series definition covered today is not very compact
 - We will look at a simpler formulation based on *complex exponentials*
 - Fourier Series only deals with *periodic* waveforms
 - We will introduce the Fourier Transform to deal with nonperiodic waveforms